|
|
Articles
by
S. KANWAL |
Total Records (
2 ) for
S. KANWAL |
|
 |
|
|
|
M. ASHRAF
,
RAHMATULLAH
,
M.A. MAQSOOD
,
S. KANWAL
,
M.A. TAHIR
and
L. ALI
|
|
Screening cultivars to grow under conditions of low phosphorus (P) availability and utilize P efficiently from compounds of low solubility in soils may be beneficial to overcome poor plant growth in P-deficient soils. The growth behavior and P utilization efficiency of seven wheat cultivars grown in hydroponics were studied, using rock phosphate as P source. The wheat cultivars grown for 30 days were significantly different in biomass accumulation, P uptake and P utilization efficiency. The dry matter production of all the cultivars was significantly correlated with P uptake, which in turn correlated to the drop in the root medium pH. The ranking of wheat cultivars on the basis of dry matter yield, P uptake and P utilization efficiency was Zamindar 80 > Yecora > C 271 > WL 711 > Barani 83 > PARI 73 > Rohtas. The cultivar Zamindar 80 appeared to possess the best growth potential in P-deficient soils. |
|
|
|
|
M. ASHRAF
,
RAHMATULLAH
,
R. AHMAD
,
A.S. BHATTI
,
M. AFZAL
,
A. SARWAR
,
M.A. MAQSOOD
and
S. KANWAL
|
|
A hydroponics experiment was conducted to evaluate the role of potassium (K) and silicon (Si) in mitigating the deleterious effects of NaCl on sugarcane genotypes differing in salt tolerance. Two salt-sensitive (CPF 243 and SPF 213) and two salt-tolerant (HSF 240 and CP 77-400) sugarcane genotypes were grown for six weeks in ½ strength Johnson's nutrient solution. The nutrient solution was salinized by two NaCl levels (0 and 100 mmol L−1 NaCl) and supplied with two levels of K (0 and 3 mmol L−1) and Si (0 and 2 mmol L−1). Applied NaCl enhanced Na+ concentration in plant tissues and significantly (P ≤ 0.05) reduced shoot and root dry matter in four sugarcane genotypes. However, the magnitude of reduction was much greater in salt-sensitive genotypes than salt-tolerant genotypes. The salts interfered with the absorption of K+ and Ca2+ and significantly (P ≤ 0.05) decreased their uptake in sugarcane genotypes. Addition of K and Si either alone or in combination significantly (P ≤ 0.05) inhibited the uptake and transport of Na+ from roots to shoots and improved dry matter yields under NaCl conditions. Potassium uptake, K+/Na+ ratios, and Ca2+ and Si uptake were also significantly (P ≤ 0.05) increased by the addition of K and/or Si to the root medium. In this study, K and Si-enhanced salt tolerance in sugarcane genotypes was ascribed to decreased Na+ concentration and increased K+ with a resultant improvement in K+/Na+ ratio, which is a good indicator to assess plant tolerance to salt stress. However, further verification of these results is warranted under field conditions. |
|
|
|
|
|
|