Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by N Liu
Total Records ( 6 ) for N Liu
  Z Liu , Z Yu , N Liu , C Zhao , J Hu and Q. Dai

In our efforts for cloning novel I2-superfamily conotoxins using the signal peptide sequence, we identified a novel conotoxin Lt12.4 from Conus litteratus. This gene has a framework XII (-C-C-C-C-CC-C-C-), which is distinct from the cysteine pattern I2-superfamily conotoxin (-C-C-CC-CC-C-C-). Subsequently, we found the signal peptide sequence of Lt12.4 by 5'-RACE. Using this new sequence, we identified another five novel conotoxins with this cysteine pattern from four Conus species (Conus eburneus, Conus imperialis, Conus marmoreus, and C. litteratus). These novel conotoxins have the same cysteine pattern as the reported Gla-TxX and Gla-MII, and may contain Gla residues. Furthermore, they have the highly conserved signal peptide and hypervariable mature peptide sequences, and widely exist in Conus species. Therefore, it could be defined as a new superfamily of E-conotoxins.

  N Liu , S Aldea , D Francois , M Cherqui Michel , M Giansily Blaizot and M. Fischler

Inherited factor VII (FVII) deficiency is a rare autosomal-recessive bleeding disorder. There are no clear guidelines regarding therapy in such patients when intracerebral surgery is performed. We report the use of recombinant activated FVII (rFVIIa) for the prophylaxis of bleeding in a female with FVII deficiency (8% of activity) undergoing urgent removal of a right fronto-rolandic intracerebral haematoma secondary to a bleeding from a cavernous angioma. To assist haemostasis during and after surgery, rFVIIa boluses were administered during the procedure and continued every 12 h during 3 days after operation to maintain a prothrombin time <15 s. Using this approach, no abnormal bleeding or thromboembolic complications were observed and rFVIIa appeared safe in this context.

  G Kang , S. F Giovannone , N Liu , F. Y Liu , J Zhang , S. G Priori and G. I. Fishman

The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca2+ release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking.


We sought to determine the frequency and severity of spontaneous Ca2+ release events and the response to the antiarrhythmic agent flecainide in Purkinje cells and ventricular myocytes from RyR2R4496C/+ CPVT mutant mice and littermate controls.

Methods and Results:

We crossed RyR2R4496C/+ knock-in mice with the newly described Cntn2-EGFP BAC transgenic mice, which express a fluorescent reporter gene in cells of the cardiac conduction system, including the distal Purkinje fiber network. Isolated ventricular myocytes (EGFP) and Purkinje cells (EGFP+) from wild-type hearts and mutant hearts were distinguished by epifluorescence and intracellular Ca2+ dynamics recorded by microfluorimetry. Both wild-type and RyR2R4496C/+ mutant Purkinje cells displayed significantly slower kinetics of activation and relaxation compared to ventricular myocytes of the same genotype, and decay in the mutant Purkinje cells was significantly slower than that observed in wild-type Purkinje cells. Of the 4 groups studied, RyR2R4496C/+ mutant Purkinje cells were also most likely to develop spontaneous Ca2+ release events, and the number of events per cell was also significantly greater. Furthermore, with isoproterenol treatment, although all 4 groups showed increases in the frequency of arrhythmogenic Ca2+i events, the RyR2R4496C/+ Purkinje cells responded with the most profound abnormalities in intracellular Ca2+ handling, including a significant increase in the frequency of unstimulated Ca2+i events and the development of alternans, as well as isolated and sustained runs of triggered beats. Both Purkinje cells and ventricular myocytes from wild-type mice showed suppression of spontaneous Ca2+ release events with flecainide, whereas in RyR2R4496C/+ mice, the Purkinje cells were preferentially responsive to drug. In contrast, the RyR2 blocker tetracaine was equally efficacious in mutant Purkinje cells and ventricular myocytes.


Purkinje cells display a greater propensity to develop abnormalities in intracellular Ca2+ handling than ventricular myocytes. This proarrhythmic behavior is enhanced by disease-causing mutations in the RyR2 Ca2+ release channel and greatly exacerbated by catecholaminergic stimulation, with the development of arrhythmogenic triggered beats. These data support the concept that Purkinje cells are critical contributors to arrhythmic triggers in animal models and humans with CPVT and suggest a broader role for the Purkinje fiber network in the genesis of ventricular arrhythmias.

  B. A Pallante , S Giovannone , L Fang Yu , J Zhang , N Liu , G Kang , W Dun , P. A Boyden and G. I. Fishman

Background— Purkinje cells (PCs) comprise the most distal component of the cardiac conduction system, and their unique electrophysiological properties and the anatomic complexity of the Purkinje fiber network may account for the prominent role these cells play in the genesis of various arrhythmic syndromes.

Methods and Results— Differential transcriptional profiling of murine Purkinje fibers and working ventricular myocytes was performed to identify novel genes expressed in PCs. The most highly enriched transcript in Purkinje fibers encoded Contactin-2 (Cntn2), a cell adhesion molecule critical for neuronal patterning and ion channel clustering. Endogenous expression of Cntn2 in the murine ventricle was restricted to a subendocardial network of myocytes that also express β-galactosidase in CCS-lacZ transgenic mice and the connexin40 gap junction protein. Both Cntn2-lacZ knockin mice and Cntn2-EGFP BAC transgenic reporter mice confirmed expression of Cntn2 in the Purkinje fiber network, as did immunohistochemical staining of single canine Purkinje fibers. Whole-cell patch-clamp recordings and measurements of Ca2+ transients in Cntn2-EGFP+ cells revealed electrophysiological properties indicative of PCs and distinctive from those of cardiac myocytes, including prolonged action potentials and frequent afterdepolarizations.

Conclusions— Cntn2 is a novel marker of the specialized cardiac conduction system. Endogenous expression of Cntn2 as well as Cntn2-dependent transcriptional reporters provides a new tool through which Purkinje cell biology and pathophysiology can now more readily be deciphered. Expression of a contactin family member within the CCS may provide a mechanistic basis for patterning of the conduction system network and the organization of ion channels within Purkinje cells.

  N Liu , H Han and P. Lasko

Vasa (Vas) is a DEAD-box RNA-binding protein required in Drosophila at several steps of oogenesis and for primordial germ cell (PGC) specification. Vas associates with eukaryotic initiation factor 5B (eIF5B), and this interaction has been implicated in translational activation of gurken mRNA in the oocyte. Vas is expressed in all ovarian germline cells, and aspects of the vas-null phenotype suggest a function in regulating the balance between germline stem cells (GSCs) and their fate-restricted descendants. We used a biochemical approach to recover Vas-associated mRNAs and obtained mei-P26, whose product represses microRNA activity and promotes GSC differentiation. We found that vas and mei-P26 mutants interact, and that mei-P26 translation is substantially reduced in vas mutant cells. In vitro, Vas protein bound specifically to a (U)-rich motif in the mei-P26 3' untranslated region (UTR), and Vas-dependent regulation of GFP-mei-P26 transgenes in vivo was dependent on the same (U)-rich 3' UTR domain. The ability of Vas to activate mei-P26 expression in vivo was abrogated by a mutation that greatly reduces its interaction with eIF5B. Taken together, our data support the conclusion that Vas promotes germ cell differentiation by directly activating mei-P26 translation in early-stage committed cells.

  Z Meng , Y Wang , L Wang , W Jin , N Liu , H Pan , L Liu , L Wagman , B. M Forman and W. Huang

Liver repair is key to resuming homeostasis and preventing fibrogenesis as well as other liver diseases. Farnesoid X receptor (FXR, NR1H4) is an emerging liver metabolic regulator and cell protector. Here we show that FXR is essential to promote liver repair after carbon tetrachloride (CCl4)-induced injury. Expression of hepatic FXR in wild-type mice was strongly suppressed by CCl4 treatment, and bile acid homeostasis was disrupted. Liver injury was induced in both wild-type and FXR–/– mice by CCl4, but FXR–/– mice had more severe defects in liver repair than wild-type mice. FXR–/– livers had a decreased peak of regenerative DNA synthesis and reduced induction of genes involved in liver regeneration. Moreover, FXR–/– mice displayed increased mortality and enhanced hepatocyte deaths. During the early stages of liver repair after CCl4 treatment, we observed overproduction of TNF and a strong decrease of phosphorylation and DNA-binding activity of signal transducer and activator of transcription 3 in livers from FXR–/– mice. Exogenous expression of a constitutively active signal transducer and activator of transcription 3 protein in FXR–/– liver effectively reduced hepatocyte death and liver injury after CCl4 treatment. These results suggest that FXR is required to regulate normal liver repair by promoting regeneration and preventing cell death.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility