Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M.S. El-Hersh
Total Records ( 3 ) for M.S. El-Hersh
  M.S. El-Hersh , K.M. Abd El-Hai and K.M. Ghanem
  Lentil is one of the most important legume crops in the world, especially in developing countries. In Egypt, root rot and wilt are the most important fungal diseases. Greenhouse and field experiments were conducted to study the effect of Molybdenum (Mo) or Cobalt (Co) on lentil pathogens (Rhizoctonia solani and Fusarium oxysporum) and nitrogen fixation compared with fungicide Rizolex T50. Lentil seeds (cvs. Giza 4 and Giza 9) were soaked 8 h in Mo or Co at concentration of 2 and 5 ppm before seeding while Rizolex T50 was used as seed-coating at 3 g kg-1 seeds. A split plot design with three replicates was used under greenhouse conditions. Results showed that damping off significantly increased in Giza 9 compared to Giza 4. While both Mo and Co decreased it in both cultivars; low level (2 ppm) was more effective. In the field, Mo and Co treatments showed significant decrease in pre and post-emergence damping off as well as dead plants (resulted from root rot and wilt). Additionally, plant height of lentil varieties showed significant increase by Mo (2 ppm) and Co (2 ppm) treatments. Different concentrations of Mo and Co were found to induce high root nodules, nitrogenase activity and nitrogen fixing bacteria. Seed yield increased significantly by Mo and Co treatments except Mo (5 ppm) on Giza 4 variety in second season. Soaking lentil seeds in Mo or Co at 2 ppm is recommended to be incorporated into the production program of lentil to decrease root rot and wilt diseases as well as improve growth and productivity.
  W.I.A. Saber , K.M. Ghanem and M.S. El-Hersh
  Isolation and identification of rock phosphate (RP) solubilizing fungi were studied under laboratory conditions. Fungal isolates that displayed the highest ratio of clear zone/colony diameter on plates of phosphate solubilization medium, were selected and identified as Aspergillus niger and Penicillium sp. The optimum condition for RP solubilization were found to be at the 6th (A. niger) and 7th (Penicillium sp.) day of incubation with shaking (150 rpm) at 30°C and pH ranging from 5.6 to 6.0. Glucose followed by fructose and xylose supported the RP solubilization process in the presence of 2.5 g L-1 RP as the optimum concentration. The overall soluble P after optimization studies on RP were 99.7 (A. niger) and 77.5 mg L-1 (Penicillium sp.). During the fermentation process, there was remarkable reduction in the final culture pH. The titratable acidity was positively correlated with RP solubilization. Under NaCl salt stress both fungi were able to solubilize RP, in which, A. niger was more tolerant than Penicillium sp. The dual and individual cultures of fungi solubilized sources of phosphate commonly exist in soil and also, possessed phytase activity. Under in vivo conditions, the inoculation of mung bean seeds with A. niger and/or Penicillium sp. in the presence of RP or calcium superphosphate (CSP), increased significantly the growth (except for branches No. plant-1), seed yield and P-uptake, as well as, improved the nodulation status and population of total and phosphate dissolving fungi in the rhizospheric soil of mung bean. These inoculations saved about 1/3 phosphate fertilizer dose. Hereby, these combined effects encourage the potential use of the isolated fungi in the biosolubilization of RP in soil plant system.
  W.I.A. Saber , M.M. El-Metwally and M.S. El-Hersh
  The rapid growth of poultry industry has linked with increased output of keratin containing wastes. Keratinous wastes can be readily fermented to useful products and commodity chemicals by the appropriate microbes. The present research concerning biodegradation of keratinous wastes. From 82 fungal isolates, 27 isolates have keratinolytic activity. Identification tests indicated that the potent isolates were Alternaria tenuissima K2 and Aspergillus nidulans K7. Using chicken feather powder as a sole source of carbon and nitrogen, keratinase productivity were 53.4 and 55.8 U mL-1 by Alt. tenuissima K2 and A. nidulans K7 at the 6th and 5th day of incubation, respectively. Using additional carbon and nitrogen sources were not found to promote keratinase productivity, except when using starch and maltose. pH 7.5, 35°C and 7.5% inoculum ratio were the best for both keratinase production and feather solubilization by both fungi. Among different keratin containing wastes, chicken, duck and goose feathers were the most degradable keratinous wastes by Alt. tenuissima K2 and A. nidulans K7. During the course of investigation, keratinase production and degradation of keratinous wastes were positively and significantly correlated. Incubation of the produced keratinases at the optimum pH (8.5) and temperature (40°C) with different keratinous wastes led to about 70% hydrolysis of chicken, duck, goose and turkey feathers after 24 h of incubation. Goat hair, sheep wool and buffalo horn showed lower response towards keratinolytic hydrolysis. Therefore, keratinous wastes can be biologically degraded by either isolated fungi or their keratinases into useful products.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility