Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M. Arbabi
Total Records ( 4 ) for M. Arbabi
  M. Arbabi , M. Sadeghi and Ch. Anyakora
  Problem Statement: Polycyclic Aromatic Hydrocarbons (PAHs) are suspected toxins that accumulate in soils and sediments due to their insolubility in water and lack of volatility. Slurry-phase biological treatment is one of the innovative technologies that involve the controlled treatment of excavated soil in a bioreactor. Due to highly soil contamination from petroleum compounds in crude oil extraction and also oil refinery sites in Iran, this research was designed based on slurry phase biotreatment to find out a solution to decontamination of oil compounds polluted sites. Approach: Soil samples were collected from Tehran oil refinery site and Bushehr oil zones. Two compositions of soils (clay and silt) were selected for slurry biotreatment experiment. Soil samples were contaminated with three rates of phenanthrene (a 3 ring PAH), 100, 500 and 1000 mg kg -1 and mixed with distilled water in solid concentration of 30% by weight after washing out with strong solvent (hexane) and putting in to the oven. Bacterial consortium was revived in culture medium which consisted of Mineral Salt Medium (MSM) based on phenanthrene concentrations and ratio of C/N/P in the range of 100/10/2. Prepared soil samples were mixed with distilled water, nutrient and bacterial consortium together in the 250 mL glass Erlenmeyer and putted in the shaker incubator with 200 rpm revolutions and 25°C for 7 weeks (45 days). Samples were analyzed for residual phenanthrene, bacterial population every week. For statistical analysis, general linear model with repeated measures (type III) analysis was applied. Results: The concentration of 100 mg L-1 of phenanthrene in clayey and silty soils reached to non detectable limit after 5 and 6 weeks, respectively. While concentration of 500 mg L-1 of phenanthrene both in clayey and silty soils reached to non detectable limit after 6 weeks. But concentration of 1000 mg L-1 both in clayey and silty soil samples has not met this limitation after 7 weeks. Due to presence of Pseudomonas strains in clayey soil samples and their ability in breaking down of benzene rings, the removal efficiency of phenanthrene in our slurry bioreactor in clayey soil was a little more than silty soil samples over time. There was a significance relationship between initial concentrations of phenanthrene and type of soil with time of biotreatment (p<0.001). Conclusion: Therefore, this technology may be applied to remediation of small foot print oil contaminated sites, e.g., gas station, oil extraction and refinery sites in Iran, in the case of urgency. Thus this study concludes that the remediation of phenanthrene with concentration up to 1000 mg kg-1 in the oil contaminated sites can be removed to the acceptable limits using slurry based system.
  M. Sadeghi , M. Arbabi , A. Nikpey and G. Mardani
  Problem Statement: MTBE is a common pollution of environmental and has become an issue of considerable concern in recent years. It is not readily amenable to remove MTBE by conventional techniques in water treatment. In the present study, the feasibility of the continuous aerobic biodegradation of MTBE, was evaluated in an Up- Flow Fixed Bed Reactor (UFBR). Approach: The UFBR at a constant Hydroulic Retention Time (HRT) of 24 h was used as a biological process that receives the intermediates due to partial oxidation of MTBE. The UFBR coupled to ozonation process as a survey system after a primary operation phase that was necessary for creatory of an initial microbial film on the carriers. Residual concentration of MTBE and its major degradation intermediates were measured by gas chromatography. Aqueous concentration of ozone in the reactor and ozone average concentration in off- gas were determined according to the indigo blue method. The COD reduction and BOD5 to COD ratio were selected as biodegradability indexes. Results: Results showed an effective degradation of MTBE in the coupled ozonation-UFBR continuous flow reactor of ten days of operation time. A partial degradation of MTBE in AOPs increases its biodegradation [The BOD5 to COD ratio increased from lowest (0.01) up to a maximum of 0.72] that corresponds to an ozone consumption of 0.62mg per each mg of COD initially present in the solution. The results showed when m. Mol[MTBE]o/m. Mol(o3) = 0.611, the COD removal efficiency was 89% and as this ratio increased up to 1.25, the of COD removal efficiency decreased to 80%. 46-68% removal of the COD was needed before the mixture was considered biodegradable. The highest removal rate of MTBE, 82.91 mg day-1 achieved through out the UFBR runs (87% removal efficiency, In this study, the removal efficiency of MTBE using integrated-process (ozonation followed biological treatment) was from 78.5-86.5%. In order to determine of biological removal rate of MTBE, another UFBR system used as a blank reactors. Results showed that the efficiency of the COD removal (by stripping with the biological degradation) was 5-8% which implies insignificant biological removal of MTBE without pre-ozonation. Solid produced in the proposed integrated process was 0.27-0.35 kg TSS kg-1 COD removed which is approximately in down range of conventional biological system (0.3-0.5 kg TSS kg-1COD). Conclusion: Present study showed that we can treatment of the polluted aqueous solutions to MTBE without microbial incubation used to integrated process.
  Ch. Anyakora , H. Coker and M. Arbabi
  Chemical fingerprinting is an aspect of environmental forensic investigation which involves chemical analysis of contaminants and associated chemicals to provide source specific information. Polynuclear Aromatic Hydrocarbons (PAHs) in the environment have 3 categories of sources namely petrogenic, pyrogenic and biogenic sources. Petrogenic PAHs are generated from geochemical alterations of organic mater. Pyrogenic PAHs originate when organic matter is incompletely combusted. Biogenic PAHs originate as a result of oxidation of microbial or plant derived compounds in older and deeper sediments. PAHs fingerprinting involves the determination of a number of quantitative diagnostic ratios of source specific marker PAH compounds. These quantitative diagnostic ratios may be used to distinguish petrogenic PAHs including phenanthrene/anthracene; benz(a)anthracene/chrysene; flouranthene/pyrene; phenanthrene/(phenanthrene+anthracene) and indeno(1,2,3-cd) pyrene/indeno (1,2,3-cd) pyrene + benzo (ghi) perylene from other sources. In this research over 40 environmental samples from the Niger Delta region were subjected to chemical fingerprinting employing some of the quantitative diagnostic ratios above with the aim of ascertaining the precise nature and source the contaminants. It was found that the PAHs contamination in the Niger Delta is not only emanating from petrogenic sources but other sources contribute significantly.
  M. Arbabi , A. Dalimi , F. Ghafarifar and M. Foroozandeh Moghadam
  Dicrocoeliosis is a hepatic parasitic disease of clinical and financial significance in ruminant breeding throughout the world. The present study was carried out to estimate the prevalence and intensity of Dicrocoelium dendriticum in slaughtered sheep and goats in various geographical areas of Iran. In a cross-sectional study, totally, 10190 of slaughtered sheep and goats at abattoirs located in 8 provinces of Iran were examined via necropsy of livers and gall bladders. Specimens were identified morphologically then the collected parasites were counted. Overall 0.93% of the livers were found to be infected. The prevalence of Dicrocoelium infection in sheep and goat were 0.85 and 1.29%, respectively. The highest prevalence in sheep and goats belong to East Azerbaijan province and the lowest belong to Fars province. This study indicated that the prevalence of dicrocoeliosis in sheep and goat of Iran was quite lower than expected.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility