Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by G Cao
Total Records ( 11 ) for G Cao
  M. L Fehrenbach , G Cao , J. T Williams , J. M Finklestein and H. M. DeLisser

Several protocols for the isolation of endothelial cells (ECs) from murine lung have been described in the literature. We, however, encountered a number of problems while using these procedures that prevented us from consistently or reliably obtaining pure populations of ECs from the lungs of mice. By incorporating specific elements from previously published protocols, as well as adding some novel features, we developed a new strategy for isolating ECs from murine lung. In this approach, a suspension of lung cells is initially prepared from the lungs of 7- to 14-day-old mouse pups using procedures that prevent intravascular clotting and leukocyte activation, minimize mechanical trauma to the lung tissue, and limit exposure to the digesting enzymes. The resulting cell suspension is cultured for 2–3 days, trypsinized to produce a suspension of single cells, and then subjected to fluorescence-activated cell sorting using an anti-ICAM-2 antibody. The sorted cells are then plated and split 1:2 at each passage to maintain a high density of the cells. Using this approach, we have been able to isolate pure populations of ECs that were sustainable for extended periods in culture without the emergence of fibroblast overgrowth or the development of senescence. We believe the success of this approach will provide opportunities to take advantage of the large and growing number of knockout and transgenic mouse lines to investigate the endothelial-specific roles of targeted molecules in the pulmonary vasculature.

  J Liu , H Zhang , Z Li , T. K Hailemariam , M Chakraborty , K Jiang , D Qiu , H. H Bui , D. A Peake , M. S Kuo , R Wadgaonkar , G Cao and X. C. Jiang

Background— It has been proposed that plasma sphingomyelin (SM) plays a very important role in plasma lipoprotein metabolism and atherosclerosis. Sphingomyelin synthase (SMS) is the last enzyme for SM de novo biosynthesis. Two SMS genes, SMS1 and SMS2, have been cloned and characterized.

Methods and Results— To evaluate the in vivo role of SMS2 in SM metabolism, we prepared SMS2 knockout (KO) and SMS2 liver-specific transgenic (LTg) mice and studied their plasma SM and lipoprotein metabolism. On a chow diet, SMS2 KO mice showed a significant decrease in plasma SM levels (25%, P<0.05), but no significant changes in total cholesterol, total phospholipids, or triglyceride, compared with wild-type (WT) littermates. On a high-fat diet, SMS2 KO mice showed a decrease in plasma SM levels (28%, P<0.01), whereas SMS2LTg mice showed a significant increase in those levels (29%, P<0.05), but no significant changes in other lipids, compared with WT littermates. Atherogenic lipoproteins from SMS2LTg mice displayed a significantly stronger tendency toward aggregation after mammalian sphingomyelinase treatment, compared with controls. Moreover, SMS2 deficiency significantly increased plasma apoE levels (2.0-fold, P<0.001), whereas liver-specific SMS2 overexpression significantly decreased those levels (1.8-fold, P<0.01). Finally, SMS2 KO mouse plasma promoted cholesterol efflux from macrophages, whereas SMS2LTg mouse plasma prevented it.

Conclusions— We therefore believe that regulation of liver SMS2 activity could become a promising treatment for atherosclerosis.

  J Liu , C Huan , M Chakraborty , H Zhang , D Lu , M. S Kuo , G Cao and X. C. Jiang

Rationale: Sphingomyelin synthase (SMS)2 contributes to de novo sphingomyelin (SM) biosynthesis and plasma membrane SM levels. SMS2 deficiency in macrophages diminishes nuclear factor B and mitogen-activated protein kinase activation induced by inflammatory stimuli.

Objective: The effects of SMS2 deficiency on the development of atherosclerosis are investigated.

Methods and Results: We measured cholesterol efflux from macrophages of wild-type (WT) and SMS2 knockout (KO) mice. We transplanted SMS2 KO mouse bone marrow into low-density lipoprotein (LDL) receptor (LDLr) knockout mice (SMS2–/–->LDLr–/–), creating a mouse model of SMS2 deficiency in the macrophages. We found that SMS2 deficiency caused significant induction of cholesterol efflux in vitro and in vivo. Moreover, we found that SMS2 KO mice had less interleukin-6 and tumor necrosis factor in the circulation before and after endotoxin stimulation, compared with controls. More importantly, after 3 months on a western-type diet, SMS2–/–->LDLr–/– mice showed decreased atherosclerotic lesions in the aortic arch, root (57%, P<0.001), and the entire aorta (42%, P<0.01), compared with WT->LDLr–/– mice. Analysis of plaque morphology revealed that SMS2–/–->LDLr–/– mice had significantly less necrotic core area (71%, P<0.001), less macrophage content (37%, P<0.01), and more collagen content (35%, P<0.05) in atherosclerotic lesions. We also found that SMS2–/–->LDLr–/– mice had significantly lower free cholesterol and cholesteryl ester levels in the brachiocephalic artery than WT->LDLr–/– mice (33 and 52%, P<0.01 and P<0.001, respectively).

Conclusions: SMS2 deficiency in the macrophages reduces atherosclerosis in mice. Macrophage SMS2 is thus a potential therapeutic target for treatment of this disease.

  J. X Zhu , G Cao , J. T Williams and H. M. DeLisser

Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in endothelial cell motility during angiogenesis. Although there is evidence that SHP-2 plays a role in PECAM-1-dependent cell motility, the molecular basis of the activity of SHP-2 in this process has not been defined. To investigate the requirement of SHP-2 in PECAM-1-dependent cell motility, studies were done in which various constructs of SHP-2 were expressed in cell transfectants expressing PECAM-1. We observed that the levels of PECAM-1 tyrosine phosphorylation and SHP-2 association with PECAM-1 were significantly increased in cells expressing a phosphatase-inactive SHP-2 mutant, suggesting that the level of PECAM-1 tyrosine phosphorylation, and thus SHP-2 binding are regulated in part by bound, catalytically active SHP-2. We subsequently found that expression of PECAM-1 stimulated wound-induced migration and the formation of filopodia (a morphological feature of motile cells). These activities were associated with increased mitogen-activated protein kinase (MAPK) activation and the dephosphorylation of paxillin (an event implicated in the activation of MAPK). The phosphatase-inactive SHP-2 mutant, however, suppressed these PECAM-1-dependent phenomena, whereas the activity of PECAM-1 expressing cells was not altered by expression of wild-type SHP-2 or SHP-2 in which the scaffold/adaptor function had been disabled. Pharmacological inhibition of SHP-2 phosphatase activity also suppressed PECAM-1-dependent motility. Furthermore, PECAM-1 expression also stimulates tube formation, but none of the SHP-2 constructs affected this process. These findings therefore suggest a model for the involvement of SHP-2 in PECAM-1-dependent motility in which SHP-2, recruited by its interaction with PECAM-1, targets paxillin to ultimately activate the MAPK pathway and downstream events required for cell motility.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility