Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by E.C. Titgemeyer
Total Records ( 2 ) for E.C. Titgemeyer
  A.F. Park , J.E. Shirley , E.C. Titgemeyer , R.C. Cochran , J.M. DeFrain , E.E. Wickersham and D.E. Johnson
  Present objective was to characterize plasma metabolites as cows transitioned from non-lactational to lactational state. Four multiparous, pregnant Holstein cows were used to achieve this goal. Plasma was obtained on day 79 before projected calving, weekly thereafter until parturition and on days 1, 3, 5, 7, 15, 20, 25, 30, 60 and 90 postpartum. Crude protein concentrations were 18.7, 11.5, 15.6 and 18.4% for late lactation (-79, -72, -65 days prepartum), far-off dry (-58, -51, -44, -37, -30 days prepartum), close-up dry (-23, -16, -9, -2 days prepartum) and early lactation diets. Albumin was above 3 g dL-1 during the last 3 weeks of lactation (days -79, -72, -65) and the first 3 weeks of the far-off dry period (days -58, -51, -44), decreased to less than 2 g dL-1 during the close-up dry period, then increased linearly after parturition reaching over 4 g dL-1 by day 25 postpartum. Plasma non-esterified fatty acids were relatively constant prepartum, increased at parturition peaking on day 15 and returned to prepartum levels by day 30 postpartum. Insulin and glucagon tended to decrease prior to calving, but glucagon increased during the first week postpartum, whereas insulin continued to decline. Insulin: glucagon was relatively constant prepartum and declined sharply through the first week after calving. Glucose and triacylglycerol decreased following parturition. Plasma urea varied with level of dietary protein and dry matter intake. Plasma total α-amino-nitrogen increased from parturition through day 20 of lactation. These data support the concept that plasma metabolites respond to changes in diet and lactational status.
  E.C. Titgemeyer , K.S. Spivey , L.K. Mamedova and B.J. Bradford
  The objective of the study was to determine if pharmacological supplies of nicotinic acid could reduce lipolysis in cattle. Six ruminally cannulated steers (225 kg) were used. In an initial study, steers received abomasal infusion of nicotinic acid at 0, 8, or 16 g day-1 then were challenged with a pulse dose of isoproterenol. Nicotinic acid at 16 g day-1 inhibited isoproterenol-stimulated increases in plasma free fatty acid concentrations, whereas 8 g day-1 did not. All 6 steers were then fed 60 mg day-1 zilpaterol-HCl and 3 were continuously abomasally infused with water and 3 with 16 g day-1 nicotinic acid. Steers receiving 16 g day-1 nicotinic acid demonstrated reductions in feed intake and nicotinic acid infusions were terminated after 3.2 days. Plasma glucose and insulin were elevated in response to the nicotinic acid infusion but glucagon was largely unaffected. Elevations in plasma free fatty acids in response to nicotinic acid were observed when feed intake was reduced, suggesting that 16 g day-1 nicotinic acid did not completely block mobilization of fatty acids. Temporal patterns for free fatty acids and insulin did not suggest that elevated free fatty acids were causatively related to insulin resistance during nicotinic acid treatment. Reductions in feed intake of cattle given pharmacological amounts of nicotinic acid indicate there may be risks associated with over-consumption of nicotinic acid.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility