Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Anne Mette Madsen
Total Records ( 3 ) for Anne Mette Madsen
  Vinni M. Hansen , Nicolai Vitt Meyling , Anne Winding , Jorgen Eilenberg and Anne Mette Madsen
  We have quantified vegetable growers’ exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers’ exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers’ exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m-3) compared to exposures reported from other occupational environments. In conclusion, vegetable growers’ exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop.
  Anne Mette Madsen , Kira Tendal , Trine Thilsing , Margit W. Frederiksen , Jesper Baelum and Jorgen V. Hansen
  The nose and mouth are the first regions of the respiratory tract in contact with airborne microorganisms. Occupational exposures to airborne microorganisms are associated with inflammation and different symptoms of the airways. The purpose of this study is to investigate the relation between occupational exposure to fungi, β-glucan, and bacteria and contents of fungi, β-glucan, and bacteria in nasal lavage (NAL) of greenhouse workers. We also studied whether contents of microorganisms in NAL were related to gender, time of the work week, and runny nose. NAL samples (n = 135) were taken Monday morning and Thursday at noon and personal exposure to inhalable bioaerosols was measured during a working day. The content of fungi and β-glucan in NAL of men was affected by their exposure to fungi and β-glucan. The content of fungi, β-glucan, and bacteria in NAL was higher Thursday at noon than Monday morning. The ratios of fungi in NAL between Thursday at noon and Monday morning were 14 (median value) for men and 3.5 for women. Gender had no effect on the exposure level but had a significant effect on the content of fungi, β-glucan, and bacteria in NAL, with the highest contents in NAL of men. On Thursdays, the median content of fungi in NAL samples of men without runny noses was 9408 cfu per NAL sample, whereas the same content for women was 595 cfu per NAL sample. Workers with runny noses had fewer fungi in NAL than workers without runny noses. A higher content of β-glucan per fungal spore was found in NAL than in the air. This indicates that mainly the larger fungal spores or pollen grains deposit in the nose. The difference between genders and the fact that the content of fungi in NAL was significantly affected by the exposure indicate that the two genders are affected by the same exposure level differently.
  Anne Mette Madsen , Athanasios Zervas , Kira Tendal , Christoffer B. Matthiesen , Ismo Kalevi Koponen and Erik Wind Hansen
  The bacterium Bacillus thuringiensis (Bt) is the active organism in a variety of commercially available products used worldwide as biopesticides. Bt products are applied in large outdoor areas as well as in indoor environments. Even though it has been sold for decades, not much is known about the occupational exposure to Bt. The aim of this study was to obtain knowledge about the exposure to Bt subspecies israelensis (Bti) in a propagation section in a greenhouse, where Bti is applied hourly by a spray boom, and to test a preventive measure to reduce the exposure to airborne Bti. Furthermore, we wanted to study the exposure during work with potted plants treated earlier with Bti. Exposure to aerosols with Bti was measured repeatedly by personal and stationary samplers before and after the intervention. Bti was identified by polymerase chain reaction in air and soil samples. Personal exposure to inhalable Bti in the propagation section was 3×105 cfu m-3 (median level, n = 22); the personal exposure of people working with plants treated earlier with Bti was 3200 cfu m-3 (median level, n = 17). The highest single measure was found for the person working with the spray boom (7×105 cfu m-3) but airborne Bti was present at all sampling stations in the propagation section. Bti constituted a high share of the airborne cultivable bacteria and a smaller share of the soilborne bacteria in the propagation section. In a human cell assay, spiking an aerosol sample with a product with Bti increased the inflammatory potential of an aerosol sample from the greenhouse significantly. Based on the inflammatory potential and the high personal exposure, a cover around the spray boom was built as an attempt to reduce the daily exposure to Bti. The cover reduced the personal exposure to Bti from 3.0×105 cfu m-3 to 1.8×104 cfu m-3. The exposure was thus reduced by a factor 17, which is a considerable reduction. Bti was present in different particle size fractions with the majority, both before and after the intervention, in the fraction of airborne particles with an aerodynamic diameter between 1.2 and 3.0 μm. The measured occupational exposure to Bti is discussed in relation to risk evaluation.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility