Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Z. L Hu
Total Records ( 2 ) for Z. L Hu
  M. J Yang , F Wang , J. H Wang , W. N Wu , Z. L Hu , J Cheng , D. F Yu , L. H Long , H Fu , N Xie and J. G. Chen
 

The adipocyte-derived hormone leptin and the pancreatic β-cell-derived hormone insulin function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity. They act in hypothalamic centers to modulate the function of specific neuronal subtypes, such as neuropeptide Y (NPY) neurons, by modifying neuronal electrical activity. To investigate the intrinsic activity of these neurons and their responses to insulin and leptin, we used a combination of morphological features and immunocytochemical technique to identify the NPY neurons of hypothalamic arcuate nucleus (ARC) and record whole cell large-conductance Ca2+-activated potassium (BK) currents on them. We found that both of the hormones increase the peak amplitude of BK currents, shifting the steady-state activation curve to the left. The effect of both insulin and leptin can be prevented by pretreatment with inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase (PI3K) but not MAPK. These data indicate that PI3K-mediated signals are the common regulators of BK channels by insulin and leptin and mediated the two hormones' identical activatory effects on ARC NPY neurons. The effect of insulin and leptin together was similar to that of insulin or leptin alone, and leptin or insulin pretreatment did not lead to insulin- or leptin-sensitizing effects, respectively. These intracellular signaling mechanisms may play key roles in regulating ARC NPY neuron activity and physiological processes such as the control of food intake and body weight, which are under the combined control of insulin and leptin.

  Z. L Hu , C Huang , H Fu , Y Jin , W. N Wu , Q. J Xiong , N Xie , L. H Long , J. G Chen and F. Wang
 

Acid-sensing ion channels (ASICs) extensively exist in both central and peripheral neuronal systems and contribute to many physiological and pathological processes. The protein that interacts with C kinase 1 (PICK1) was cloned as one of the proteins interacting with protein kinase C (PKC) and colocalized with ASIC1 and ASIC2. Here, we used PICK1 knockout (PICK1-KO) C57/BL6 mice together with the whole cell patch clamp, calcium imaging, RT-PCR, Western blot, and immunocytochemistry techniques to explore the possible change in ASICs and the regulatory effects of PKC on ASICs. The results showed that PICK1 played a key role in regulation of ASIC functions. In PICK1-KO mouse cortical neurons, both the amplitude of ASIC currents and elevation of [Ca2+]i mediated by acid were decreased, which were attributable to the decreased expression of ASIC1a and ASIC2a proteins in the plasma membrane. PKC, a partner protein of PICK1, regulated ASIC functions via PICK1. The agonist and antagonist of PKC only altered ASIC currents and acid-induced increase in [Ca2+]i in wild-type, but not in KO mice. In conclusion, our data provided the direct evidence from PICK1-KO mice that a novel target protein, PICK1, would regulate ASIC function and membrane expression in the brain. In addition, PICK1 played the bridge role between PKC and ASICs.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility