Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Z Wu
Total Records ( 7 ) for Z Wu
  C Sun , M Xu , Z Xing , Z Wu , Y Li , T Li and M. Zhao
 

Lissencephaly is a severe disease characterized by brain malformation. The main causative gene of lissencephaly is LIS1. Mutation or deletion of LIS1 leads to proliferation and migration deficiency of neurons in brain development. However, little is known about its biological function in embryonic development. In this article, we identified the expression patterns of zebrafish LIS1 gene and investigated its function in embryonic development. We demonstrated that zebrafish consisted of two LIS1 genes, LIS1a and LIS1b. Bioinformatics analysis revealed that LIS1 genes were conserved in evolution both in protein sequences and genomic structures. The expression patterns of zebrafish LIS1a and LIS1b showed that both transcripts were ubiquitously expressed at all embryonic developmental stages and in adult tissues examined. At the protein level, the LIS1 products mainly exist in brain tissue and in embryos at early stages as shown by western blotting analysis. The whole-mount immunostaining data showed that LIS1 proteins were distributed all over the embryos from 1-cell stage to 5 day post-fertilization. Knockdown of LIS1 protein expression through morpholino antisense oligonucleotides resulted in many developmental deficiencies in zebrafish, including brain malformation, circulation abnormality, and body curl. Taken together, our study suggested that zebrafish LIS1 plays a very important role in embryonic development.

  Y Liao , J Tang , M Ma , Z Wu , M Yang , X Wang , T Liu , X Chen , P. C Fletcher and W. Hao
 

Ketamine abuse has been shown to have a deleterious impact on brain function. However, the precise mechanisms of ketamine dependence-induced pathological change remain poorly understood. Although there is evidence for white matter changes in drug abuse, the presence of white matter abnormalities in chronic ketamine users has not been studied. White matter volumes were measured using in vivo diffusion tensor magnetic resonance imaging data in 41 ketamine-dependent subjects and 44 drug-free healthy volunteers. White matter changes associated with chronic ketamine use were found in bilateral frontal and left temporoparietal cortices. There was also evidence that frontal white matter fractional anisotropy correlated with the severity of drug use (as measured by estimated total ketamine consumption). We provide direct evidence for dose-dependent abnormalities of white matter in bilateral frontal and left temporoparietal regions following chronic ketamine use. The findings suggest a microstructural basis for the changes in cognition and experience observed with prolonged ketamine use. Moreover, the similarities of these changes to those observed in chronic schizophrenia have implications for the glutamate model of this illness.

  Y Wu , X Feng , Y Jin , Z Wu , W Hankey , C Paisie , L Li , F Liu , S. H Barsky , W Zhang , R Ganju and X. Zou
 

The natural compound indole-3-carbinol (I3C; found in vegetables of the genus Brassica) is a promising cancer prevention or therapy agent. The cell division cycle 25A (Cdc25A) phosphatase is overexpressed in a variety of human cancers and other diseases. In the present study, I3C induced degradation of Cdc25A, arrest of the G1 cell cycle, and inhibition of the growth of breast cancer cells. We also showed that the Ser124 site of Cdc25A, which is related to cyclin-dependent kinase 2, is required for I3C-induced degradation of Cdc25A in breast cancer cells, and that interruption of the ATM-Chk2 pathway suppressed I3C-induced destruction of Cdc25A. Our in vivo studies of different mutated forms of Cdc25A found that the mutation Cdc25AS124A (Ser124 to Ala124), which confers resistance to I3C-induced degradation of Cdc25A, attenuated I3C inhibition of breast tumorigenesis in a mouse xenograft model. The present in vitro and in vivo studies together show that I3C-induced activation of the ATM-Chk2 pathway and degradation of Cdc25A represent a novel molecular mechanism of I3C in arresting the G1 cell cycle and inhibiting the growth of breast cancer cells. The finding that I3C induces Cdc25A degradation underscores the potential use of this agent for preventing and treating cancers and other human diseases with Cdc25A overexpression. Cancer Prev Res; 3(7); 818–28. ©2010 AACR.

  D Raina , R Ahmad , M. D Joshi , L Yin , Z Wu , T Kawano , B Vasir , D Avigan , S Kharbanda and D. Kufe
 

The mucin 1 (MUC1) oncoprotein is aberrantly overexpressed by ~90% of human breast cancers. However, there are no effective agents that directly inhibit MUC1 and induce death of breast cancer cells. We have synthesized a MUC1 inhibitor (called GO-201) that binds to the MUC1 cytoplasmic domain and blocks the formation of MUC1 oligomers in cells. GO-201, and not an altered version, attenuates targeting of MUC1 to the nucleus of human breast cancer cells, disrupts redox balance, and activates the DNA damage response. GO-201 also arrests growth and induces necrotic death. By contrast, the MUC1 inhibitor has no effect on cells null for MUC1 expression or nonmalignant mammary epithelial cells. Administration of GO-201 to nude mice bearing human breast tumor xenografts was associated with loss of tumorigenicity and extensive necrosis, which results in prolonged regression of tumor growth. These findings show that targeting the MUC1 oncoprotein is effective in inducing death of human breast cancer cells in vitro and in tumor models. [Cancer Res 2009;69(12):5133–41]

  X Yang , M Feng , X Jiang , Z Wu , Z Li , M Aau and Q. Yu
 

The Rb–E2F pathway drives cell cycle progression and cell proliferation, and the molecular strategies safeguarding its activity are not fully understood. Here we report that E2F1 directly transactivates miR-449a/b. miR-449a/b targets and inhibits oncogenic CDK6 and CDC25A, resulting in pRb dephosphorylation and cell cycle arrest at G1 phase, revealing a negative feedback regulation of the pRb–E2F1 pathway. Moreover, miR-449a/b expression in cancer cells is epigenetically repressed through histone H3 Lys27 trimethylation, and epigenetic drug treatment targeting histone methylation results in strong induction of miR-449a/b. Our study reveals a tumor suppressor function of miR-449a/b through regulating Rb/E2F1 activity, and suggests that escape from this regulation through an aberrant epigenetic event contributes to E2F1 deregulation and unrestricted proliferation in human cancer.

  X Zhang , N Cui , Z Wu , J Su , J. S Tadepalli , S Sekizar and C. Jiang
 

Rett syndrome caused by mutations in methyl-CpG-binding protein 2 (Mecp2) gene shows abnormalities in autonomic functions in which brain stem norepinephrinergic systems play an important role. Here we present systematic comparisons of intrinsic membrane properties of locus coeruleus (LC) neurons between Mecp2–/Y and wild-type (WT) mice. Whole cell current clamp was performed in brain slices of 3- to 4-wk-old mice. Mecp2–/Y neurons showed stronger inward rectification and had shorter time constant than WT cells. The former was likely due to overexpression of inward rectifier K+ (Kir)4.1 channel, and the latter was attributable to the smaller cell surface area. The action potential duration was prolonged in Mecp2–/Y cells with an extended rise time. This was associated with a significant reduction in the voltage-activated Na+ current density. After action potentials, >60% Mecp2–/Y neurons displayed fast and medium afterhyperpolarizations (fAHP and mAHP), while nearly 90% WT neurons showed only mAHP. The mAHP amplitude was smaller in Mecp2–/Y neurons. The firing frequency was higher in neurons with mAHP, and the frequency variation was greater in cells with both fAHP and mAHP in Mecp2–/Y mice. Small but significant differences in spike frequency adaptation and delayed excitation were found in Mecp2–/Y neurons. These results indicate that there are several electrophysiological abnormalities in LC neurons of Mecp2–/Y mice, which may contribute to the dysfunction of the norepinephrine system in Rett syndrome.

  Z Wu , K Luby Phelps , A Bugde , L. A Molyneux , B Denard , W. H Li , G. M Suel and D. L. Garbers
 

Spermatogonial stem cells have an innate ability to choose, with constant probability, between different fates independently of cues from the microenvironment.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility