Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Z Liu
Total Records ( 33 ) for Z Liu
  M Li , Y Chen , Z Liu , F Shen , X Bian and Y. Meng

Ribosome-inactivating proteins (RIPs) are a family of enzymes that depurinate rRNA and inhibit protein biosynthesis. Here we report the purification, apoptosis-inducing activity, and polyethylene glycol (PEG) modification of RIP from the bitter melon seeds. The protein has a homogenous N-terminal sequence of N-Asp-Val-Ser-Phe-Arg. Moreover, the RIP displayed strong apoptosis-inducing activity and suppressed cancer cell growth. This might be attributed to the activation of caspases-3. To make it available for in vivo application, the immunogenicity of RIP was reduced by chemical modification with 20 kDa (mPEG)2-Lys-NHS. The inhibition activity of both PEGylated and non-PEGylated RIP against cancer cells was much stronger than against normal cells, and the antigenicity of PEGylated RIP was reduced significantly. Our results suggested that the PEGylated RIP might be potentially developed as anti-cancer drug.

  Z Liu , M Liu , G Niu , Y Cheng and J. Fei

Transcriptional repression is as important as transcriptional activation in establishing cell-type specific patterns of gene expression. RE1-silencing transcription factor (REST), also known as neuronal restrictive silencing factor (NRSF), is a transcriptional regulator that represses a battery of neuronal differentiation genes in non-neuronal cells or in neural progenitor cells by binding to a specific DNA sequence (repressor element-1/neuron-restrictive silencer element, RE1/NRSE). REST/NRSF functions in the neuronal development are widely studied, however, little is known about target genes in various non-neuronal lineages that may result in cell differentiation. Here, we use RNA interference (RNAi) technology combined with the microarray strategy to identify potential REST/NRSF targets and RE1/NRSEs in human non-neuronal cell line HEK 293. Expression of 54 genes was up-regulated by inhibition of REST/NRSF in the HEK 293 cells according to the microarray experiment and 13 of those were further confirmed by quantitative RT-PCR. Our results confirmed the good confidence and reliability of current research data based on in silico, chromatin immunoprecipitation in combination with microarrays (ChIP-chip), and high-throughput sequencing (ChIP-seq). However, in view of the fact that thousands of genes have been testified or predicted to be recognized by REST/NRSF, our data show that only a few genes among those are directly up-regulated by the interaction of REST/NRSF with RE1/NRSEs sites in gene sequences.

  Q Liu , Z Dai , Z Liu , X Liu , C Tang , Z Wang , G Yi , L Liu , Z Jiang , Y Yang and Z. Yuan

It has been reported that oxidized low-density lipoprotein (Ox-LDL) can increase the expression of adipophilin. However, the detailed mechanisms are not fully understood. The aim of this study was to investigate the mechanism of Ox-LDL on adipophilin expression and the intracellular lipid droplet accumulation. A mouse macrophage-like cell line, RAW264.7, was used throughout, and it was found that Ox-LDL induced adipophilin expression in a dose-dependent manner. Moreover, Ox-LDL induced peroxisome proliferator-activated receptor- (PPAR) expression and PPAR-specific inhibitor T0070907 abrogated Ox-LDL-induced adipophilin expression, but specific agonist GW1929 not. Furthermore, Ox-LDL induced phosphorylation of ERK1/2, and ERK1/2-specific inhibition by PD98059 suppressed the Ox-LDL-induced PPAR and adipophilin expression. The results showed that ERK1/2 or PPAR-specific inhibition decreased the amounts of intracellular lipid droplets. Meanwhile, the PPAR-specific agonist increased intracellular lipid droplets. These results suggested that Ox-LDL-induced increase in adipophilin level via ERK1/2 activation is one of the mechanisms of inducing greater amounts of intracellular lipid droplets in RAW264.7 cells, which indicated that adipophilin is involved in atherosclerotic progression.

  Z Liu , Z Yu , N Liu , C Zhao , J Hu and Q. Dai

In our efforts for cloning novel I2-superfamily conotoxins using the signal peptide sequence, we identified a novel conotoxin Lt12.4 from Conus litteratus. This gene has a framework XII (-C-C-C-C-CC-C-C-), which is distinct from the cysteine pattern I2-superfamily conotoxin (-C-C-CC-CC-C-C-). Subsequently, we found the signal peptide sequence of Lt12.4 by 5'-RACE. Using this new sequence, we identified another five novel conotoxins with this cysteine pattern from four Conus species (Conus eburneus, Conus imperialis, Conus marmoreus, and C. litteratus). These novel conotoxins have the same cysteine pattern as the reported Gla-TxX and Gla-MII, and may contain Gla residues. Furthermore, they have the highly conserved signal peptide and hypervariable mature peptide sequences, and widely exist in Conus species. Therefore, it could be defined as a new superfamily of E-conotoxins.

  J Yin , A Zuberi , Z Gao , D Liu , Z Liu and J. Ye

The extract of plant Shilianhua (SLH; Sinocrassula indica Berge) is a component in a commercial product for control of blood glucose. However, it remains to be investigated whether the SLH extract enhances insulin sensitivity in a model of type 2 diabetes. To address this question, the SLH crude extract was fractionated into four parts on the basis of polarity, and bioactivities of each part were tested in cells. One of the fractions, F100, exhibited a strong activity in the stimulation of glucose consumption in vitro. Glucose consumption was induced significantly by F100 in 3T3-L1 adipocytes, L6 myotubes, and H4IIE hepatocytes in the absence of insulin. F100 also increased insulin-stimulated glucose consumption in L6 myotubes and H4IIE hepatocytes. It increased insulin-independent glucose uptake in 3T3-L1 adipocytes and insulin-dependent glucose uptake in L6 cells. The glucose transporter-1 (GLUT1) protein was induced in 3T3-L1 cells, and the GLUT4 protein was induced in L6 cells by F100. Mechanism study indicated that F100 induced GSK-3β phosphorylation, which was comparable with that induced by insulin. Additionally, the transcriptional activity of NF-B was inhibited by F100. In RAW 264.7 macrophages, mRNA expression of NF-B target genes (TNF and MCP-1) was suppressed by F100. In KK.Cg-Ay/+ mice, F100 decreased fasting insulin and blood glucose and improved insulin tolerance significantly. We conclude that the F100 may be a bioactive component in the SLH plant. It promotes glucose metabolism in vitro and in vivo. Inhibition of GSK-3β and NF-B may be the potential mechanism.

  H. Y Liu , T Hong , G. B Wen , J Han , D Zuo , Z Liu and W. Cao

A majority of subjects with insulin resistance and hyperinsulinemia can maintain their blood glucose levels normal for the whole life presumably through protein kinase B (Akt)-dependent insulin signaling. In this study, we found that the basal Akt phosphorylation level was increased in liver and gastrocnemius of mice under the high-fat diet (HFD). Levels of mitochondrial DNA and expression of some mitochondrion-associated genes were decreased by the HFD primarily in liver. Triglyceride content was increased in both liver and gastrocnemius by the HFD. Oxidative stress was induced by the HFD in both liver and gastrocnemius. Insulin sensitivity was decreased by the HFD. All of these changes were largely or completely reversed by treatment of animals with the phosphatidylinositol 3-kinase inhibitor LY-294002 during the time when animals usually do not eat. Consequently, the overall insulin sensitivity was increased by treatment with LY-294002. Together, our results indicate that increased basal Akt-dependent insulin signaling suppresses mitochondrial production, increases ectopic fat accumulation, induces oxidative stress, and desensitizes insulin signaling in subjects with insulin resistance and hyperinsulinemia.

  W Niu , P. J Bilan , S Ishikura , J. D Schertzer , A Contreras Ferrat , Z Fu , J Liu , S Boguslavsky , K. P Foley , Z Liu , J Li , G Chu , T Panakkezhum , G. D Lopaschuk , S Lavandero , Z Yao and A. Klip

Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting C2C12 myotubes overexpressing GLUT4 with an exofacial myc-epitope tag (GLUT4myc) and explored stimulation of GLUT4 traffic by physiologically relevant agents. Carbachol (an acetylcholine receptor agonist) induced a gain in cell surface GLUT4myc that was mediated by nicotinic acetylcholine receptors. Carbachol also activated AMPK, and this response was sensitive to the contractile myosin ATPase inhibitor N-benzyl-p-toluenesulfonamide. The gain in surface GLUT4myc elicited by carbachol or by the AMPK activator 5-amino-4-carboxamide-1 β-ribose was sensitive to chemical inhibition of AMPK activity by compound C and partially reduced by siRNA-mediated knockdown of AMPK catalytic subunits or LKB1. In addition, the carbachol-induced gain in cell surface GLUT4myc was partially sensitive to chelation of intracellular calcium with BAPTA-AM. However, the carbachol-induced gain in cell surface GLUT4myc was not sensitive to the CaMKK inhibitor STO-609 despite expression of both isoforms of this enzyme and a rise in cytosolic calcium by carbachol. Therefore, separate AMPK- and calcium-dependent signals contribute to mobilizing GLUT4 in response to carbachol, providing an in vitro cell model that recapitulates the two major signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying molecular events of contraction-regulated GLUT4 traffic.

  R Garzon , S Liu , M Fabbri , Z Liu , C. E.A Heaphy , E Callegari , S Schwind , J Pang , J Yu , N Muthusamy , V Havelange , S Volinia , W Blum , L. J Rush , D Perrotti , M Andreeff , C. D Bloomfield , J. C Byrd , K Chan , L. C Wu , C. M Croce and G. Marcucci

Aberrant DNA hypermethylation contributes to myeloid leukemogenesis by silencing structurally normal genes involved in hematopoiesis. MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs. Recently, miRNAs have been shown to play a role as both targets and effectors in gene hypermethylation and silencing in malignant cells. In the current study, we showed that enforced expression of miR-29b in acute myeloid leukemia cells resulted in marked reduction of the expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B at both RNA and protein levels. This in turn led to decrease in global DNA methylation and reexpression of p15INK4b and ESR1 via promoter DNA hypomethylation. Although down-regulation of DNMT3A and DNMT3B was the result of a direct interaction of miR-29b with the 3' untranslated regions of these genes, no predicted miR-29b interaction sites were found in the DNMT1 3' untranslated regions. Further experiments revealed that miR-29b down-regulates DNMT1 indirectly by targeting Sp1, a transactivator of the DNMT1 gene. Altogether, these data provide novel functional links between miRNAs and aberrant DNA hypermethylation in acute myeloid leukemia and suggest a potentially therapeutic use of synthetic miR-29b oligonucleotides as effective hypomethylating compounds.

  C Li , J Lu , Z Liu , L. E Wang , H Zhao , A. K El Naggar , E. M Sturgis and Q. Wei

Caspase 8 (CASP8) is an apoptosis-related cysteine peptidase involved in the death receptor pathway and likely in the mitochondrial pathway. A CASP8 promoter region six-nucleotide deletion/insertion (–652 6N ins/del) variant and a coding region D302H polymorphism are reportedly important in cancer development, but no reported study has assessed the associations of these genetic variations with risk of head and neck cancer. In a hospital-based study of non-Hispanic whites, we genotyped CASP8 –652 6N del and 302H variants in 1,023 patients with squamous cell carcinoma of the head and neck (SCCHN) and 1,052 cancer-free controls. Crude and adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated using unconditional logistic regression models. The CASP8 –652 6N del variant genotypes or haplotypes were inversely associated with SCCHN risk (adjusted OR, 0.70; 95% CI, 0.57-0.85 for the ins/del + del/del genotypes compared with the ins/ins genotype; adjusted OR, 0.73; 95% CI, 0.55-0.97 for the del-D haplotype compared with the ins-D haplotype). Furthermore, the number of the CASP8 –652 6N del (but not 302H) variant allele tended to correlate with increased levels of camptothecin-induced p53-mediated apoptosis in T lymphocytes from 170 cancer-free controls. We concluded that the CASP8 –652 6N del variant allele may contribute to the risk of developing SCCHN in non-Hispanic white populations. Further validation by population-based case-control studies and rigorous mechanistic studies is warranted. Cancer Prev Res; 3(2); 246–53

  W Chen , Y Luo , L Liu , H Zhou , B Xu , X Han , T Shen , Z Liu , Y Lu and S. Huang

Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, little is known about its anticancer mechanism. Here, we show that CPT inhibited cancer cell proliferation by arresting cells in G1-G0 phase of the cell cycle. This is associated with the inhibition of cyclin D1 expression and retinoblastoma (Rb) protein phosphorylation. Furthermore, we found that CPT inhibited the signaling pathway of the mammalian target of rapamycin (mTOR), a central regulator of cell proliferation. This is evidenced by the findings that CPT inhibited type I insulin-like growth factor I– or 10% fetal bovine serum–stimulated phosphorylation of mTOR, p70 S6 kinase 1, and eukaryotic initiation factor 4E binding protein 1 in a concentration- and time-dependent manner. Expression of constitutively active mTOR conferred resistance to CPT inhibition of cyclin D1 expression and Rb phosphorylation, as well as cell growth. The results suggest that CPT is a novel antiproliferative agent. Cancer Prev Res; 3(8); 1015–25. ©2010 AACR.

  M. E Zafereo , E. M Sturgis , Z Liu , L. E Wang and G. Li

The nucleotide excision repair (NER) pathway is central in response to damage induced by environmental carcinogens. Efficiency of this pathway, probably genetically determined, may modulate individual risk of developing squamous cell carcinoma of the head and neck (SCCHN) as well as second primary malignancy (SPM) after the index tumor. We hypothesized that common non-synonymous and regulatory single-nucleotide polymorphisms (SNPs) in the NER core genes individually, and more probably collectively, associated with the risk of SPM. We genotyped for seven selected SNPs in 1376 incident SCCHN patients who were prospectively recruited between 1995 and 2006 and followed for SPM development. We found that 110 patients (8%) developed SPM: 43 (39%) second SCCHN; 38 (35%) other tobacco-associated sites and 29 (26%) other non-tobacco-associated sites. The associations of these SNPs with SPM risk were assessed assuming a recessive genetic model. We did not find any significant associations of each or in combination of the seven SNPs with SPM risk in the recessive models. However, when we explored the combined effect based on an alternatively dominant genetic model, we found that the number of observed risk genotypes was associated with a significantly increased SPM risk in a dose-response manner (P = 0.005) and patients with five to seven risk genotypes had a significantly 2.4-fold increased SPM risk compared with patients with zero to two risk genotypes. These findings suggest that a profile of NER core gene polymorphisms might collectively contribute to risk of SPM not in a recessive model but in a dominant model among patients with an index primary SCCHN. These findings need to be validated in future studies with larger sample sizes and longer follow-up time.

  D Lei , E. M Sturgis , Z Liu , M. E Zafereo , Q Wei and G. Li

p21 plays an important role in modulating cell cycle control, inducing apoptosis, and inhibiting cell growth, subsequently affecting cancer risk. We investigated the association between two putatively functional single-nucleotide polymorphisms (SNPs) of p21 (p21 C98A and p21 C70T) among 1282 patients diagnosed with incident squamous cell carcinoma of the head and neck (SCCHN) and risk of second primary malignancy (SPM) in an ongoing molecular epidemiology study. We used Log-rank test and Cox proportional hazard models to assess the association of these two SNPs with SPM-free survival and SPM risk. We found that patients with either p21 variant genotypes of the two polymorphisms had a significantly reduced SPM-free survival compared with patients with either p21 wild-type homozygous genotypes (Log-rank test, P = 0.0016). Compared with patients having the p21 98 CC and p21 70 CC genotypes, the patients having p21 98 CA/AA and p21 70 CT/TT variant genotypes had a significantly greater risk of developing SPM, respectively, [hazard ratio (HR) = 1.80, 95% CI = 1.14–2.82 for p21 C98A and HR = 1.82, 95% confidence interval (CI) = 1.16–2.85 for p21 C70T]. Moreover, after combining the variant genotypes of two SNPs, patients with variant genotypes had a significantly moderately increased risk for SPM compared with patients with no variant genotypes (HR = 2.00, 95% CI = 1.26–3.00), and the risk was particularly pronounced in several subgroups. Our results support an increased risk of SPM after index SCCHN with both p21 polymorphisms individually and in combination.

  Z Liu , G Li , S Wei , J Niu , L. E Wang , E. M Sturgis and Q. Wei

Single-nucleotide polymorphisms (SNPs) of TERT-rs2736098 (C > T) and CLPTM1L-rs401681(C > T) at the 5p15.33 locus are significantly associated with cancer risk as reported in genome-wide association studies (GWAS), but there are no reported studies for squamous cell carcinoma of the head and neck (SCCHN). In a case–control study of 1079 SCCHN cases and 1115 cancer-free controls of non-Hispanic whites who were frequency matched by age and sex, we genotyped for these two SNPs and assessed their associations with SCCHN risk. Compared with the CC genotypes of each polymorphism, the associations of a slightly reduced risk of SCCHN with the variant genotypes of CT + TT of both polymorphisms were approaching statistical significance [Odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.76–1.08 for TERT-rs2736098 and OR = 0.86, 95% CI = 0.71–1.04 for CLPTM1L-rs401681, respectively]. When the two SNPs were combined, the variant genotypes of the two SNPs were significantly associated a moderately reduced risk of SCCHN (OR = 0.82, 95% CI = 0.67–0.99), and the number of variant genotypes was associated with a significantly reduced risk in a dose–response manner (P = 0.028). Furthermore, the reduced risk was more pronounced in ever smokers, ever drinkers and patients with oropharyngeal cancer. Our results suggested that these two SNPs at the 5p15.33 locus may be associated with a reduced risk of SCCHN, particularly for their combined effect. Although we added additional evidence for the association of the two SNPs with cancer risk as reported in GWAS, additional studies are needed to replicate our findings.

  Y. J Huang , J Niu , S Wei , M Yin , Z Liu , L. E Wang , E. M Sturgis and Q. Wei

Human DEC1 (deleted in esophageal cancer 1) gene is located on chromosome 9q, a region frequently deleted in various types of human cancers, including squamous cell carcinoma of the head and neck (SCCHN). However, only one epidemiological study has evaluated the association between DEC1 polymorphisms and cancer risk. In this hospital-based case–control study, four potentially functional single-nucleotide polymorphisms –1628 G>A (rs1591420), –606 T>C [rs4978620, in complete linkage disequilibrium with –249T>C (rs2012775) and –122 G>A(rs2012566)], c.179 C>T p.Ala60Val (rs2269700) and 3' untranslated region-rs3750505 as well as the TP53 tumor suppressor gene codon 72 (Arg72Pro, rs1042522) polymorphism were genotyped in 1111 non-Hispanic Whites SCCHN patients and 1130 age-and sex-matched cancer-free controls. After adjustment for age, sex and smoking and drinking status, the variant –606CC (i.e. –249CC) homozygotes had a significantly reduced SCCHN risk (adjusted odds ratio = 0.71, 95% confidence interval = 0.52–0.99) compared with the –606TT homozygotes. Stratification analyses showed that a reduced risk associated with the –606CC genotype was more pronounced in subgroups of non-smokers, non-drinkers, younger subjects (defined as ≤57 years), carriers of the TP53 Arg/Arg (rs1042522) genotype, patients with oropharyngeal cancer or late-stage SCCHN. Further in silico analysis revealed that the –249 T-to-C change led to a gain of a transcription factor-binding site. Additional functional analysis showed that the –249T-to-C change significantly enhanced transcriptional activity of the DEC1 promoter and the DNA–protein-binding activity. We conclude that the DEC1 promoter –249 T>C (rs2012775) polymorphism is functional, modulating susceptibility to SCCHN among non-Hispanic Whites.

  P O'Kane , L Xie , Z Liu , L Queen , G Jackson , Y Ji and A. Ferro

Acute administration of aspirin increases nitric oxide (NO) synthesis by platelets, an effect not shared by other non-steroidal anti-inflammatory drugs. The aim of the present study was to determine the mechanism by which aspirin acutely increases the activity of NO synthase type 3 (NOS-3), the predominant NOS isoform expressed by platelets, and specifically whether this occurs through an increase in its acetylation.

Methods and results

Platelets isolated from the blood of healthy human subjects were exposed in vitro to vehicle or aspirin at different concentrations (5 µmol/L–4 mmol/L). Changes in intraplatelet Ca2+ concentration were determined from fura-2 fluorescence. Following immunoprecipitation of NOS-3 from platelet lysates, its activity was determined from l-[3H]arginine to l-[3H]citrulline conversion, and its serine phosphorylation quantified by western blotting. Acetylation of NOS-3 in platelets was assessed by the incorporation of radioactivity into the immunoprecipitated enzyme from [acetyl-14C]aspirin. Following transfection of HeLa cells with NOS-3, NO biosynthesis in response to aspirin was determined from cyclic GMP measurement, and sites of NOS-3 acetylation were ascertained by liquid chromatography–tandem mass spectrometry. At all concentrations tested, aspirin increased the activity of NOS-3 from platelets. This was not associated with any measurable change in intraplatelet Ca2+ concentration. Serine phosphorylation of NOS-3 in platelets was decreased, and this was especially marked for serine-1177 phosphorylation, whereas acetylation of NOS-3 was increased, by aspirin incubation. HeLa cells transfected with NOS-3 exhibited an increase in NO biosynthesis following aspirin exposure, and this was associated with acetylation of the enzyme on both serine-765 and serine-771.


Aspirin acetylates NOS-3 acutely in platelets, and this causes an increase in its activity as well as a decrease in its phosphorylation. It is also possible that aspirin indirectly affects NOS-3 activity by acetylating other substrates within the platelet, but this remains to be determined.

  L. J Martin , Z Liu , J Pipino , B Chestnut and M. A. Landek

Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with -pifithrin protects immature neurons; blocking p53-mitochondrial functions with µ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity.

  Z Liu , S Yue , X Chen , T Kubin and T. Braun

Rationale: Polyploidy and multinucleation are characteristic features of mammalian cardiomyocytes, which develop shortly after birth when most differentiated cardiomyocytes become acytokinetic. Cardiac overload and hypertrophy further increase the degree of polyploidy of cardiomyocytes, suggesting a role in cell type–specific responses to physiological and pathological stimuli.

Objective: We sought to study the function of cyclinG1 in the regulation of polyploidy and multinucleation in cardiomyocytes.

Methods and Results: We found that expression of cyclinG1, a transcriptional target of p53, coincides with arrest of cardiomyocyte proliferation and onset of polyploidization. Overexpression of cyclinG1 promoted DNA synthesis but inhibited cytokinesis in neonatal cardiomyocytes leading to an enlarged population of binuclear cardiomyocytes. Reciprocally, inactivation of the cyclinG1 gene in mice lowered the degree of polyploidy and multinucleation in cardiomyocytes. Moreover, lack of cyclinG1 prevented the increase of polynucleated cardiomyocytes in response to pressure overload and hypertrophy.

Conclusions: CyclinG1 is an important player for the regulation of polyploidy and multinucleation in cardiomyocytes probably by inhibition of apoptosis caused by checkpoint activation.

  Z Liu , D. G de Matos , H. Y Fan , M Shimada , S Palmer and J. S. Richards

Ovulation has long been regarded as a process resembling an inflammatory response. Recent studies indicate that genes associated with innate immune responses were also expressed during the ovulation process. Because the innate immune genes are induced in cumulus cell oocyte complexes (COCs) later than the inflammation-associated genes, we hypothesize that COC expansion is dependent on specific sequential changes in cumulus cells. Because IL-6 is a potent mediator of immune responses, we sought to determine what factors regulate the induction of Il6 mRNA in COCs and what impact IL-6 alone would have on COC expansion. We found that the levels of Il6 mRNA increased dramatically during COC expansion, both in vivo and in vitro. Moreover, IL-6, together with its soluble receptor (IL-6SR), could bypass the need for either amphiregulin and/or prostaglandin E2 to induce the expansion of COCs. This ability of IL-6/IL-6SR to induce COC expansion was blocked by the inhibitors to p38MAPK, MAPK kinase 1/2, and Janus kinase. More importantly, when COCs were in vitro maturated in the presence of IL-6, they had a significantly higher embryo transfer rate than the ones without IL-6 and comparable with in vivo matured oocytes. IL-6/IL-6SR activated multiple signaling pathways (Janus kinase/signal transducer and activator of transcription, ERK1/2, p38MAPK, and AKT) and progressively induced genes known to impact COC expansion, genes related to inflammation and immune responses, and some transcription factors. Collectively, these data indicate that IL-6 alone can act as a potent autocrine regulator of ovarian cumulus cell function, COC expansion, and oocyte competence.

  K Bootvong , Z Liu , C McGrath , U Hagg , R. W. K Wong , M Bendeus and S. Yeung

The objective of this study was to assess the feasibility of virtual models as an alternative to orthodontic plaster models. Virtual dental models (obtained from OrthoCAD®) and corresponding plaster models of 80 patients in the permanent dentition were randomly selected from patients seeking orthodontic care. Inter-examiner error was assessed by measuring tooth width, overjet, overbite, intermolar width, intercanine width, and midline discrepancy. Criterion validity of virtual model analysis was determined by the agreement between the measurements from virtual and plaster models. Test–retest reliability was determined by remeasuring 10 virtual models 1 week later. Comparison analysis was assessed by calculating the mean directional differences and standardized directional differences. Correlation analysis was determined by calculating the intraclass correlation coefficients (ICCs).

Both intra- and inter-examiner reliability and test–retest reliability of virtual model analysis were acceptable in measuring intercanine, intermolar, overjet, overbite, midline discrepancy, space analysis, and tooth width (ICC > 0.7). Good criterion validity was indicated by agreement between the results from the plaster and virtual models (ICC > 0.8). There were substantial agreements for canine and molar relationship classifications ( > 0.70). The results suggest that analysis performed on virtual models is as valid as traditional plaster models for intra- and inter-arch relationship.

  Z Liu , A. C Obenauf , M. R Speicher and R. Kopan

Manipulating the mouse genome is a widespread technology with important applications in many biological fields ranging from cancer research to developmental biology. Likewise, correlations between copy number variations (CNVs) and human diseases are emerging. We have developed the reference-query pyrosequencing (RQPS) method, which is based on quantitative pyrosequencing and uniquely designed probes containing single nucleotide variations (SNVs), to offer a simple and affordable genotyping solution capable of identifying homologous recombinants independent of the homology arm size, determining the micro-amplification status of endogenous human loci, and quantifying virus/transgene copy number in experimental or commercial species. In addition, we also present a simple pyrosequencing-based protocol that could be used for the enrichment of homologous recombinant embryonic stem (ES) cells.

  C Li , Z Chen , Z Liu , J Huang , W Zhang , L Zhou , D. L Keefe and L. Liu

Mammalian parthenogenetic embryos (pE) are not viable due to placental deficiency, presumably resulting from lack of paternally expressed imprinted genes. Pluripotent parthenogenetic embryonic stem (pES) cells derived from pE could advance regenerative medicine by avoiding immuno-rejection and ethical roadblocks. We attempted to explore the epigenetic status of imprinted genes in the generation of pES cells from parthenogenetic blastocysts, and its relationship to pluripotency of pES cells. Pluripotency was evaluated for developmental and differentiation potential in vivo, based on contributions of pES cells to chimeras and development to day 9.5 of pES fetuses complemented by tetraploid embryos (TEC). Consistently, pE and fetuses failed to express paternally expressed imprinted genes, but pES cells expressed those genes in a pattern resembling that of fertilized embryos (fE) and fertilized embryonic stem (fES) cells derived from fE. Like fE and fES cells, but unlike pE or fetuses, pES cells and pES cell–fetuses complemented by TEC exhibited balanced methylation of Snrpn, Peg1 and U2af1-rs1. Coincidently, global methylation increased in pE but decreased in pES cells, further suggesting dramatic epigenetic reprogramming occurred during isolation and culture of pES cells. Moreover, we identified decreased methylation of Igf2r, Snrpn, and especially U2af1-rs1, in association with increased contributions of pES cells to chimeras. Our data show that in vitro culture changes epigenetic status of imprinted genes during isolation of pES cells from their progenitor embryos and that increased expression of U2af1-rs1 and Snrpn and decreased expression of Igf2r correlate with pluripotency of pES cells.

  M Li , Y Seki , P. H. L Freitas , M Nagata , T Kojima , S Sultana , S Ubaidus , T Maeda , J Shimomura , J. E Henderson , M Tamura , K Oda , Z Liu , Y Guo , R Suzuki , T Yamamoto , R Takagi and N. Amizuka

The signaling axis comprising the parathyroid hormone (PTH)-related peptide (PTHrP), the PTH/PTHrP receptor and the fibroblast growth factor receptor 3 (FGFR3) plays a central role in chondrocyte proliferation. The Indian hedgehog (IHH) gene is normally expressed in early hypertrophic chondrocytes, and its negative feedback loop was shown to regulate PTH/PTHrP receptor signaling. In this study, we examined the regulation of PTH/PTHrP receptor gene expression in a FGFR3-transfected chondrocytic cell line, CFK2. Expression of IHH could not be verified on these cells, with consequent absence of hypertrophic differentiation. Also, expression of the PTH/PTHrP receptor (75% reduction of total mRNA) and the PTHrP (50% reduction) genes was reduced in CFK2 cells transfected with FGFR3 cDNA. Interestingly, we verified significant reduction in cell growth and increased apoptosis in the transfected cells. STAT1 was detected in the nuclei of the CFK2 cells transfected with FGFR3 cDNA, indicating predominance of the JAK/STAT signaling pathway. The reduction in PTH/PTHrP receptor gene in CFK2 cells overexpressing FGFR3 was partially blocked by treatment with an inhibitor of JAK3 (WHI-P131), but not with an inhibitor of MAPK (SB203580) or JAK2 (AG490). Altogether, these findings suggest that FGFR3 down-regulates PTH/PTHrP receptor gene expression via the JAK/STAT signaling in chondrocytic cells.

  H Wang , A. X Wang , Z Liu , W Chai and E. J. Barrett

Endothelial nitric oxide synthase (eNOS) activity is tightly regulated by posttranscriptional modification and its subcellular localization. Here we examined whether insulin modulates nitric oxide (NO) production by regulating eNOS subcellular localization. We used confocal microscopy and immunoblots to examine the time course for 1) subcellular targeting/association of eNOS and caveolin-1 (CAV-1); 2) eNOS Ser1179 phosphorylation; and 3) NO production in cultured bovine aorta endothelial cells. Serum starvation increased eNOS/CAV-1 localization to the perinuclear region. Adding insulin provoked their prompt translocation to and association at the plasma membrane (PM). Specific monoclonal antibodies against either CAV-1 or eNOS coimmunoprecipitated the other from bovine aorta endothelial cell membrane extracts, and insulin increased this interaction. Insulin stimulated NO production transiently despite a persistent eNOS Ser1179 phosphorylation. The decline of NO production correlated temporally to insulin-induced translocation of eNOS and CAV-1 to PM. Knockdown of CAV-1 expression with a specific small interfering RNA duplex resulted in eNOS redistributing to the perinuclear region and nearly doubled insulin-induced NO production. Inhibition of phosphatidylinositol 3-kinase activity with wortmannin not only significantly inhibited insulin-induced translocation of eNOS and CAV-1 to PM but also blocked insulin-induced interaction of CAV-1 with eNOS at PM. Insulin increased incorporation of [3H]palmitic acid into eNOS immunoprecipitates by approximately 140%. Insulin-induced translocation of eNOS and CAV-1 to PM was palmitoylation dependent. Inhibiting eNOS and CAV-1 palmitoylation enhanced the NO production while blocking the translocation of eNOS and CAV-1 to PM induced by insulin. These data show that insulin acutely regulates eNOS and CAV-1 trafficking to PM of vascular endothelial cells where their interaction can regulate eNOS activity.

  L Kang , X Zhang , Y Xie , Y Tu , D Wang , Z Liu and Z. Y. Wang

Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-36, a variant of ER-. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-36 via an activator protein 1 binding site. Both 17β-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-36, such as transcription activation activity of a VP16-ER-36 fusion protein and activation of the MAPK/ERK1/2 in ER-36-expressing cells. ER-36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca2+ mobilization only in ER-36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-36. Thus, the ER- variant ER-36, not GPR30, is involved in nongenomic estrogen signaling.

  H. Y Fan , A O'Connor , M Shitanaka , M Shimada , Z Liu and J. S. Richards

Wingless-type mouse mammary tumor virus integration site family (WNT)/β-catenin (CTNNB1) pathway components are expressed in ovarian granulosa cells, direct female gonad development, and are regulated by the pituitary gonadotropins. However, the in vivo functions of CTNNB1 during preovulatory follicular development, ovulation, and luteinization remain unclear. Using a mouse model Ctnnb1(Ex3)fl/fl;Cyp19-Cre (Ctnnb1(Ex3)gc–/–), expressing dominant stable CTNNB1 in granulosa cells of small antral and preovulatory follicles, we show that CTNNB1 facilitates FSH-induced follicular growth and decreases the follicle atresia (granulosa cell apoptosis). At the molecular level, WNT signaling and FSH synergistically promote the expression of genes required for cell proliferation and estrogen biosynthesis, but decrease FOXO1, which negatively regulates proliferation and steroidogenesis. Conversely, dominant stable CTNNB1 represses LH-induced oocyte maturation, ovulation, luteinization, and progesterone biosynthesis. Specifically, granulosa cells in the Ctnnb1(Ex3)gc–/– mice showed compromised responses to the LH surge and decreased levels of the epidermal growth factor-like factors (Areg and Ereg) that in vivo and in vitro mediate LH action. One underlying mechanism by which CTNNB1 prevents LH responses is by reducing phosphorylation of cAMP-responsive element-binding protein, which is essential for the expression of Areg and Ereg. By contrast, depletion of Ctnnb1 using the Ctnnb1fl/fl;Cyp19-Cre mice did not alter FSH regulation of preovulatory follicular development or female fertility but dramatically enhanced LH induction of genes in granulosa cells in culture. Thus, CTNNB1 can enhance FSH and LH actions in antral follicles but overactivation of CTNNB1 negatively effects LH-induced ovulation and luteinization, highlighting the cell context-dependent and developmental stage-specific interactions of WNT/CTNNB1 pathway and G protein-coupled gonadotropin receptors in female fertility.

  X Chen , Z Liu and J. Xu

Nuclear receptor coactivator 1 [NCOA1/steroid receptor coactivator (SRC)-1] and NCOA3 (SRC-3/AIB1/ACTR) constitute two thirds of the SRC (steroid receptor coactivator) family. Although in vitro experiments have suggested overlapping functions between NCOA1 and NCOA3, their in vivo functional relationship is poorly understood. In this study, NCOA1 and NCOA3 double knockout mice were generated to determine the compensatory roles of NCOA1 and NCOA3 in development. NCOA1–/– mice survived normally, whereas most NCOA3–/– embryos were viable at embryonic d 13.5 (E13.5). In contrast, the majority of double-knockout (DKO) embryos died by E13.5. NCOA1 and NCOA3 are expressed in the labyrinth, and labyrinths of NCOA1+/–;NCOA3–/– and DKO placentas were small compared with wild-type and single-knockout labyrinths. DKO labyrinths exhibited low densities of maternal blood sinuses and fetal capillaries and displayed fetomaternal blood transfusion. At the interface between maternal and fetal circulations, layer I sinusoidal trophoblast giant cells showed a reduced density of microvilli. Layer III syncytiotrophoblasts appeared to accumulate large lipid droplets and have reduced density and deepened invaginations of the intrasyncytial bays. The endothelial layer in DKO labyrinth showed abnormal morphologies and had large lipid droplets. Furthermore, disruption of NCOA1 and NCOA3 increased labyrinth trophoblast proliferation and their progenitor gene expression but decreased their differentiation gene expression. NCOA1 and NCOA3 deficiencies also affected the expression of several genes for placental morphogenesis including TGFβ-, peroxisome proliferator-activated receptor-β-, and peroxisome proliferator-activated receptor--regulated genes and for glucose transportation including GLUT1 and Cx26. These findings demonstrate that NCOA1 and NCOA3 cooperatively regulate placental morphogenesis and embryo survival.

  J. R Cort , Z Liu , G. M Lee , K.N.L Huggins , S Janes , K Prickett and N. H. Andersen

We have employed pramlintide (prAM) as a surrogate for hAM in CD and NMR studies of the conformational preferences of the N-terminal portion of the structure in media which do not provide long-lived monomeric solutions of hAM due to its rapid conversion to preamyloid β aggregate states. Direct comparison of hAM and prAM could be made under helix-formation-favoring conditions. On the basis of CD and NMR studies: (i) the Cys2–Cys7 loop conformation has a short-span of helix (Ala5–Cys7); (ii) the extent to which this helix propagates further into the sequence is medium-dependent; a helix from Ala5 through Ser20 (with end fraying from His18 onward) is observed in aqueous fluoroalcohol media; (iii) in 12+ vol.% HFIP, the amyloidogenic region of hAM forms a second helical domain (Phe23–Ser29); (iv) the two helical regions of hAM do not have any specific geometric relationship as they are connected by a flexible loop that takes different conformations and (v) although the extreme C-terminus is essential for bioactivity, it is found to be extensively randomized with conformer interconversions occurring at a much faster rate than that is observed in the remainder of the peptide sequence. Two NMR-derived structures of the 1–22 sequence fragment of hAM have been derived. The work also serves to illustrate improved methods for the NMR characterization of helices. A detailed quantitative analysis of the NOE intensities observed in aqueous HFIP revealed alternative conformations in the C-terminal portion of the common amylin helix, a region that is known to be involved in the biorecognition phenomena leading to amyloidogenesis. Even though the SNN sequence appears to be a flexible loop, the chemical shifts (and changes induced upon helix structuring) suggest some interactions between the loop and the amyloidogenic segment of hAM that occur on partial helix formation.

  Z Liu , H. C Adams and I. P. Whitehead

Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that regulates neurotrophin-3-induced cell migration in Schwann cells. Here we report that Dbs regulates cell motility in tumor-derived, human breast epithelial cells through activation of Cdc42 and Rac1. Cdc42 and Rac1 are activated in T47D cells that stably express onco- or proto-Dbs, and activation is dependent upon growth of the cells on collagen I. Transient suppression of expression of Cdc42 or Rac1 by small interfering RNAs attenuates Dbs-enhanced motility. Both onco- and proto-Dbs-enhanced motility correlates with an increase in tyrosine phosphorylation of focal adhesion kinase on Tyr-397 and p130Cas on Tyr-410 and an increase in the abundance of the Crk·p130Cas complex. Suppression of expression of Cdc42 or its effector, Ack1, reduces tyrosine phosphorylation of focal adhesion kinase and p130Cas and disrupts the Crk·p130Cas complex. We further determined that suppression of expression of Cdc42, Ack1, p130Cas, or Crk reduces Rac1 activation and cell motility in Dbs-expressing cells to a level comparable with that in vector cells. Therefore, a cascade of activation of Cdc42 and Rac1 by Dbs through the Cdc42 effector Ack1 and the Crk·p130Cas complex is established. Suppression of the expression of endogenous Dbs reduces cell motility in both T47D cells and MDA-MB-231 cells, which correlates with the down-regulation of Cdc42 activity. This suggests that Dbs activates Cdc42 in these two human breast cancer cell lines and that the normal function of Dbs may be required to support cell movement.

  Z Liu and Y. Zheng

Eukaryotic cells possess a sophisticated membrane system to facilitate diverse functions. Whereas much is known about the nature of membrane systems in interphase, the organization and function of the mitotic membrane system are less well understood. In this study, we show that epsin, an endocytic adapter protein, regulates mitotic membrane morphology and spindle integrity in HeLa cells. Using epsin that harbors point mutations in the epsin NH2-terminal homology domain and spindle assembly assays in Xenopus laevis egg extracts, we show that epsin-induced membrane curvature is required for proper spindle morphogenesis, independent of its function in endocytosis during interphase. Although several other membrane-interacting proteins, including clathrin, AP2, autosomal recessive hypercholesterolemia, and GRASP65, are implicated in the regulation of mitosis, whether they participate through regulation of membrane organization is unclear. Our study of epsin provides evidence that mitotic membrane organization influences spindle integrity.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility