Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Z Li
Total Records ( 19 ) for Z Li
  X Gong , W Ye , H Zhou , X Ren , Z Li , W Zhou , J Wu , Y Gong , Q Ouyang , X Zhao and X. Zhang

Acetylcholinesterase (AChE) expression may be induced during apoptosis in various cell types. Here, we used the C-terminal of AChE to screen the human fetal brain library and found that it interacted with Ran-binding protein in the microtubule-organizing center (RanBPM). This interaction was further confirmed by coimmunoprecipitation analysis. In HEK293T cells, RanBPM and AChE were heterogeneously expressed in the cisplatin-untreated cytoplasmic extracts and in the cisplatin-treated cytoplasmic or nuclear extracts. Our previous studies performed using morphologic methods have shown that AChE translocates from the cytoplasm to the nucleus during apoptosis. Taken together, these results suggest that RanBPM is an AChE-interacting protein that is translocated from the cytoplasm into the nucleus during apoptosis, similar to the translocation observed in case of AChE.

  J Yang , X Liu , J Yu , L Sheng , Y Shi , Z Li , Y Hu , J Xue , L Wu , Y Liang , J Xia and D. Liang

Gene therapy has emerged as a promising approach for the lethal disorder of Duchenne muscular dystrophy (DMD). Using a novel non-viral delivery system, the human ribosomal DNA (hrDNA) targeting vector, we targeted a minidystrophin-GFP fusion gene into the hrDNA locus of HT1080 cells with a high site-specific integrated efficiency of 10–5, in which the transgene could express efficiently and continuously. The minidystrophin-GFP fusion protein was easily found to localize on the plasma membrane of HT1080 cells, indicating its possible physiologic performance. Our findings showed that the hrDNA-targeting vector might be highly useful for DMD gene therapy study.

  D Qi , K Cai , O Wang , Z Li , J Chen , B Deng , L Qian and Y. Le

Amylin is the major component of pancreatic amyloid, which is implicated in the development of type 2 diabetes. It is costored with insulin in the secretory granules of pancreatic β-cells and cosecreted with insulin following stimulation with glucose. Here, we investigate the effect of fatty acids (FAs) on amylin expression and secretion by β-cells and explore the underlying mechanisms. Palmitate and oleate dose-dependently induced amylin mRNA accumulation in murine pancreatic β-cell line MIN6 and primary pancreatic islets. the inductive effect of FAs on amylin expression is independent of glucose concentration. FAs upregulated amylin expression at the transcriptional level, and FAs must be metabolized to induce amylin expression. FAs also significantly induced human amylin promoter activation. Pretreatment of MIN6 cells with Ca2+ chelator (EGTA, BAPTA-AM) PKC inhibitor Gö-6976 or protein synthesis inhibitor cycloheximide significantly inhibited FA-induced amylin mRNA expression. Transcription factors cAMP-responsive element-binding protein, pancreatic and duodenal homeobox factor-1, and peroxisome proliferator-activated receptor were not involved in FA-induced amylin expression. Palmitate and oleate both increased amylin and insulin release from MIN6 cells and stimulated amylin expression but had no effect on insulin expression. Mice refed with Intralipid had significantly higher levels of plasma FFA, amylin, and insulin than those refed with saline. These data demonstrate that FAs differently regulate amylin and insulin expression and induce both amylin and insulin release. Ca2+ and PKC signaling pathways and de novo-synthesized protein(s) were involved in FA-induced amylin expression. Induction of amylin production and release by FA may contribute to its biological functions under physiological conditions.

  M Hoekstra , S. J. A Korporaal , Z Li , Y Zhao , M Van Eck and T. J. C. Van Berkel

Lipoprotein-associated cholesterol has been suggested to make a significant contribution to adrenal steroidogenesis in vivo. To determine whether lipoproteins indeed contribute to optimal adrenal steroidogenesis in mice, in the current study we have determined the effect of relative lipoprotein deficiency on adrenal steroidogenesis in C57BL/6 wild-type mice. Feeding C57BL/6 mice the lipid-lowering drug probucol (0.25% wt/wt) for 2 wk induced a 90% decrease in plasma high-density lipoprotein (HDL) cholesterol levels and a 77% reduction in low-density lipoprotein (LDL) cholesterol levels. Neutral lipid stores were depleted upon probucol treatment specifically in the glucocorticoid-producing zona fasciculata of the adrenal, leading to a 44% decreased plasma corticosterone level under basal conditions. Exposure to lipopolysaccharide (LPS) induced a 37% increase in the adrenal uptake of HDL cholesteryl esters. Probucol-treated mice could induce only a relatively minor corticosterone response upon a LPS challenge compared with controls, which coincided with an approximately twofold increased hepatic expression level of interleukin-6 and tumor necrosis factor (TNF) and an 89% higher TNF response in plasma. Furthermore, a compensatory two- to fivefold upregulation of LDL receptor (cholesterol uptake) and HMG-CoA reductase (cholesterol synthesis) expression was noticed in the adrenals of probucol-treated mice. In conclusion, we have shown that lipoprotein deficiency in mice as a result of probucol feeding is associated with decreased adrenal cortex cholesterol levels, a lower basal and stress-induced plasma glucocorticoid level, and an increased susceptibility to LPS-induced inflammation. Therefore, it is suggested that plasma lipoproteins are required for optimal adrenal steroidogenesis and protection against endotoxemia in mice.

  J Liu , H Zhang , Z Li , T. K Hailemariam , M Chakraborty , K Jiang , D Qiu , H. H Bui , D. A Peake , M. S Kuo , R Wadgaonkar , G Cao and X. C. Jiang

Background— It has been proposed that plasma sphingomyelin (SM) plays a very important role in plasma lipoprotein metabolism and atherosclerosis. Sphingomyelin synthase (SMS) is the last enzyme for SM de novo biosynthesis. Two SMS genes, SMS1 and SMS2, have been cloned and characterized.

Methods and Results— To evaluate the in vivo role of SMS2 in SM metabolism, we prepared SMS2 knockout (KO) and SMS2 liver-specific transgenic (LTg) mice and studied their plasma SM and lipoprotein metabolism. On a chow diet, SMS2 KO mice showed a significant decrease in plasma SM levels (25%, P<0.05), but no significant changes in total cholesterol, total phospholipids, or triglyceride, compared with wild-type (WT) littermates. On a high-fat diet, SMS2 KO mice showed a decrease in plasma SM levels (28%, P<0.01), whereas SMS2LTg mice showed a significant increase in those levels (29%, P<0.05), but no significant changes in other lipids, compared with WT littermates. Atherogenic lipoproteins from SMS2LTg mice displayed a significantly stronger tendency toward aggregation after mammalian sphingomyelinase treatment, compared with controls. Moreover, SMS2 deficiency significantly increased plasma apoE levels (2.0-fold, P<0.001), whereas liver-specific SMS2 overexpression significantly decreased those levels (1.8-fold, P<0.01). Finally, SMS2 KO mouse plasma promoted cholesterol efflux from macrophages, whereas SMS2LTg mouse plasma prevented it.

Conclusions— We therefore believe that regulation of liver SMS2 activity could become a promising treatment for atherosclerosis.

  S. M Pantanelli , Z Li , R Fariss , S. P Mahesh , B Liu and R. B. Nussenblatt

Patients with active posterior and intermediate uveitis have inflammatory cells in their vitreous; those with primary intraocular lymphoma have malignant B-lymphoma cells concomitantly. These cell types cannot be distinguished clinically. The goal of this study was to investigate intrinsic autofluorescence as a noninvasive way of differentiating immune and lymphomatous cell populations. Human primary T cells were stimulated with or without anti-CD3 plus anti-CD28 stimulation. B-lymphoma cells (CA46) were cultured separately. Five experimental groups were prepared: unstimulated T cells, stimulated T cells, CA46 cells, and stimulated T cells mixed with CA46 cells at a ratio of 1:3 or mixed at a ratio of 3:1. Samples were excited with three wavelengths and imaged with a confocal microscope. For each condition, the autofluorescent emissions from the sample were measured. In separate experiments, T cells or CA46 cells were injected into the anterior chamber of a BALB/c mouse eye and autofluorescence was measured. Pure T-cell and lymphoma populations were clearly distinguishable based on autofluorescence intensity spectra. CA46 cells were the least fluorescent when excited with 351-nm light, but most fluorescent when excited with longer wavelengths like 488 nm. Mixed populations of T cells and CA46 cells had emission intensities that fell predictably in between those of the pure populations. An ex vivo study showed that CA46 cells could be detected based on their intrinsic autofluorescence. Our studies showed that normal activated and malignant lymphocyte populations can be distinguished based on their intrinsic autofluorescent properties. Future work with in vivo models may prove useful in facilitating the diagnosis of uveitis and other ocular diseases. [Cancer Res 2009;69(11):4911–7]

  T Blom , N Back , A. L Mutka , R Bittman , Z Li , A de Lera , P. T Kovanen , U Diczfalusy and E. Ikonen

Rationale: The synthetic sphingosine analog FTY720 is undergoing clinical trials as an immunomodulatory compound, acting primarily via sphingosine 1-phosphate receptor activation. Sphingolipid and cholesterol homeostasis are closely connected but whether FTY720 affects atherogenesis in humans is not known.

Objective: We examined the effects of FTY720 on the processing of scavenged lipoprotein cholesterol in human primary monocyte-derived macrophages.

Methods and Results: FTY720 did not affect cholesterol uptake but inhibited its delivery to the endoplasmic reticulum, reducing cellular free cholesterol cytotoxicity. This was accompanied by increased levels of Niemann–Pick C1 protein (NPC1) and ATP-binding cassette transporter (ABC)A1 proteins and increased efflux of endosomal cholesterol to apolipoprotein A-I. These effects were not dependent on sphingosine 1-phosphate receptor activation. Instead, FTY720 stimulated the production of 27-hydroxycholesterol, an endogenous ligand of the liver X receptor, leading to liver X receptor–induced upregulation of ABCA1. Fluorescently labeled FTY720 was targeted to late endosomes, and the FTY720-induced upregulation of ABCA1 was NPC1-dependent, but the endosomal exit of FTY720 itself was not.

Conclusions: We conclude that FTY720 decreases cholesterol toxicity in primary human macrophages by reducing the delivery of scavenged lipoprotein cholesterol to the endoplasmic reticulum and facilitating its release to physiological extracellular acceptors. Furthermore, FTY720 stimulates 27-hydroxycholesterol production, providing an explanation for the atheroprotective effects and identifying a novel mechanism by which FTY720 modulates signaling.

  X Yang , M Feng , X Jiang , Z Wu , Z Li , M Aau and Q. Yu

The Rb–E2F pathway drives cell cycle progression and cell proliferation, and the molecular strategies safeguarding its activity are not fully understood. Here we report that E2F1 directly transactivates miR-449a/b. miR-449a/b targets and inhibits oncogenic CDK6 and CDC25A, resulting in pRb dephosphorylation and cell cycle arrest at G1 phase, revealing a negative feedback regulation of the pRb–E2F1 pathway. Moreover, miR-449a/b expression in cancer cells is epigenetically repressed through histone H3 Lys27 trimethylation, and epigenetic drug treatment targeting histone methylation results in strong induction of miR-449a/b. Our study reveals a tumor suppressor function of miR-449a/b through regulating Rb/E2F1 activity, and suggests that escape from this regulation through an aberrant epigenetic event contributes to E2F1 deregulation and unrestricted proliferation in human cancer.

  J. H Klusmann , Z Li , K Bohmer , A Maroz , M. L Koch , S Emmrich , F. J Godinho , S. H Orkin and D. Reinhardt

Children with trisomy 21/Down syndrome (DS) are at high risk to develop acute megakaryoblastic leukemia (DS-AMKL) and the related transient leukemia (DS-TL). The factors on human chromosome 21 (Hsa21) that confer this predisposing effect, especially in synergy with consistently mutated transcription factor GATA1 (GATA1s), remain poorly understood. Here, we investigated the role of Hsa21-encoded miR-125b-2, a microRNA (miRNA) overexpressed in DS-AMKL/TL, in hematopoiesis and leukemogenesis. We identified a function of miR-125b-2 in increasing proliferation and self-renewal of human and mouse megakaryocytic progenitors (MPs) and megakaryocytic/erythroid progenitors (MEPs). miR-125b-2 overexpression did not affect megakaryocytic and erythroid differentiation, but severely perturbed myeloid differentiation. The proproliferative effect of miR-125b-2 on MEPs accentuated the Gata1s mutation, whereas growth of DS-AMKL/TL cells was impaired upon miR-125b repression, suggesting synergism during leukemic transformation in GATA1s-mutated DS-AMKL/TL. Integrative transcriptome analysis of hematopoietic cells upon modulation of miR-125b expression levels uncovered a set of miR-125b target genes, including DICER1 and ST18 as direct targets. Gene Set Enrichment Analysis revealed that this target gene set is down-regulated in DS-AMKL patients highly expressing miR-125b. Thus, we propose miR-125b-2 as a positive regulator of megakaryopoiesis and an oncomiR involved in the pathogenesis of trisomy 21-associated megakaryoblastic leukemia.

  T Fei , K Xia , Z Li , B Zhou , S Zhu , H Chen , J Zhang , Z Chen , H Xiao , J. D. J Han and Y. G. Chen

Embryonic stem (ES) cells are under precise control of both intrinsic self-renewal gene regulatory network and extrinsic growth factor-triggered signaling cascades. How external signaling pathways connect to core self-renewal transcriptional circuits is largely unknown. To probe this, we chose BMP signaling, which is previously recognized as a master control for both self-renewal and lineage commitment of murine ES cells. Here, we mapped target gene promoter occupancy of SMAD1/5 and SMAD4 on a genome-wide scale and found that they associate with a large group of developmental regulators that are enriched for H3K27 trimethylation and H3K4 trimethylation bivalent marks and are repressed in the self-renewing state, whereas they are rapidly induced upon differentiation. Smad knockdown experiments further indicate that SMAD-mediated BMP signaling is largely required for differentiation-related processes rather than directly influencing self-renewal. Among the SMAD-associated genes, we further identified Dpysl2 (previously known as Crmp2) and the H3K27 demethylase Kdm6b (previously known as Jmjd3) as BMP4-modulated early neural differentiation regulators. Combined with computational analysis, our results suggest that SMAD-mediated BMP signaling balances self-renewal versus differentiation by modulating a set of developmental regulators.

  H Wang , A Chattopadhyay , Z Li , B Daines , Y Li , C Gao , R Gibbs , K Zhang and R. Chen

One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac5 or sensE2 mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.

  J Zheng , G Wang , G. Y Yang , D Wang , X Luo , C Chen , Z Zhang , Q Li , W Xu , Z Li and D. Wang

This Phase II study was conducted to evaluate the activity and feasibility of a regimen of nedaplatin and 5-fluorouracil as induction chemotherapy, followed by intensity-modulated radiotherapy concurrent with chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma.


Patients received neoadjuvant chemotherapy comprised two cycles of 5-fluorouracil at 700 mg/m2/day administered on days 1–4 as continuous intravenous infusion and nedaplatin (100 mg/m2 administered i.v. over 2 h) given after the administration of 5-fluorouracil on day 1, repeated every 3 weeks, followed by intensity-modulated radiotherapy concurrent with nedaplatin. During intensity-modulated radiotherapy, nedaplatin was administered at a dose of 100 mg/m2 intravenous infusion on days 1, 22 and 43, given ~60 min before radiation.


Fifty-nine (95.8%) of the 60 patients were assessable for response. Thirty-eight cases of complete response and 14 cases of partial response were confirmed after completion of chemoradiation, with the objective response rate of 86.7% (95% CI, 78.1–95.3%). The median follow-up period was 48 months (range, 30–62 months). The 3-year progression-free survival and overall survival were 75.0% (95% CI, 63.0–87.0%) and 85.5% (95% CI, 75.9–95.1%). No patient showed Grade 3 or higher renal dysfunction. The most commonly observed late effect was xerostomia, but the severity diminished over time, and the detectable xerostomia at 24 months was 10.2%. There were no treatment-related deaths during this study.


Neoadjuvant chemotherapy with nedaplatin and 5-fluorouracil followed by concomitant nedaplatin and intensity-modulated radiotherapy is an effective and safe treatment for Southern China patients affected by locoregionally advanced nasopharyngeal carcinoma.

  Z Li , R. K Hite , Y Cheng and T. Walz

We evaluated imaging plates (IPs) and the DITABIS Micron scanner for their use in recording images of negatively stained single-particle specimens and electron diffraction patterns of two-dimensional crystals. We first established the optimal imaging and read-out conditions for images of negatively stained single-particle specimens using the signal-to-noise ratio of the images as the evaluation criterion. We found that images were best recorded on IPs at a magnification of 67 000x, read out with a gain setting of 20 000 and a laser power setting of 30% with subsequent binning over 2 x 2 pixels. Our results show that for images of negatively stained specimens, for which the resolution is limited to ~20 Å, IPs are a good alternative to EM film. We also compared IPs with a 2K x 2K Gatan charge-coupled device (CCD) camera for their use in recording electron diffraction patterns of sugar-embedded two-dimensional crystals. Diffraction patterns of aquaporin-0 recorded on IPs and with the CCD camera showed reflections beyond 3 Å and had similar RFriedel as well as Rmerge values. IPs can thus be used to collect diffraction patterns, but CCD cameras are more convenient and remain the best option for recording electron diffraction patterns.

  S. D Hingtgen , Z Li , W Kutschke , X Tian , R. V Sharma and R. L. Davisson

Recent studies from our laboratory and others have shown that increases in cytoplasmic superoxide (O2·–) levels and Akt activation play a key role in agonist-stimulated NF-B activation and cardiomyocyte hypertrophy in vitro. In this study, we tested the hypothesis that adenovirus (Ad)-mediated intramyocardial gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD) or a dominant-negative form of Akt (AdDNAkt) in mice would attenuate pressure overload-induced increases in activation of the redox-sensitive transcription factor NF-B and cardiac hypertrophy. Adult C57BL/6 mice were subjected to thoracic aortic banding (TAB) or sham surgery, and intramyocardial injections of viral vectors (AdCu/ZnSOD, AdDNAkt, or control) were performed. There was robust transgene expression in the heart, which peaked 6–7 days after injection and then declined to undetectable levels by 12–14 days. In mice injected with AdBgL II, TAB caused a significant increase in O2·– generation and cardiac mass at 1 wk, and these responses were markedly attenuated by AdCu/ZnSOD. In addition, TAB induced time-dependent activation of NF-B in the myocardium as measured longitudinally by in vivo bioluminescent imaging of NF-B-dependent luciferase expression. This was also abolished by intracardiac AdCu/ZnSOD or AdDNAkt, but not the control vector. The inhibition of Akt and O2·–-mediated NF-B activation in TAB hearts was associated with an attenuation of cardiac hypertrophy. Since a direct cause-and-effect relationship between NF-B activation and cardiomyocyte hypertrophy has been established previously, our data support the hypothesis that increased O2·– generation and Akt activation are key signaling intermediates in pressure overload-induced activation of NF-B and cardiac hypertrophy.

  Z Li , M. Q Hassan , M Jafferji , R. I Aqeilan , R Garzon , C. M Croce , A. J van Wijnen , J. L Stein , G. S Stein and J. B. Lian

Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3'-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3'-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3'-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.

  K. Y Lo , Z Li , F Wang , E. M Marcotte and A. W. Johnson

The step by step assembly process from preribosome in the nucleus to translation-competent 60S ribosome subunit in the cytoplasm is revealed (also see Kemmler et al. in this issue).

  F. J Vizeacoumar , N van Dyk , F S.Vizeacoumar , V Cheung , J Li , Y Sydorskyy , N Case , Z Li , A Datti , C Nislow , B Raught , Z Zhang , B Frey , K Bloom , C Boone and B. J. Andrews

A combination of yeast genetics, synthetic genetic array analysis, and high-throughput screening reveals that sumoylation of Mcm21p promotes disassembly of the mitotic spindle.

  W. L Yen , T Shintani , U Nair , Y Cao , B. C Richardson , Z Li , F. M Hughson , M Baba and D. J. Klionsky

COG subunits localize to the phagophore assembly site where they interact with autophagy proteins and are required for double-membrane Cvt vesicle and autophagosome formation.

  K. H Watanabe , Z Li , K. J Kroll , D. L Villeneuve , N Garcia Reyero , E. F Orlando , M. S Sepulveda , T. W Collette , D. R Ekman , G. T Ankley and N. D. Denslow

Estrogenic chemicals in the aquatic environment have been shown to cause a variety of reproductive anomalies in fish including full sex reversal, intersex, and altered population sex ratios. Two estrogens found in the aquatic environment, 17-ethinylestradiol (EE2) and 17β-estradiol (E2), have been measured in wastewater treatment effluents and have been shown to cause adverse effects in fish. To further our understanding of how estrogen exposure affects reproductive endpoints in the male fathead minnow (FHM, Pimephales promelas), a physiologically based computational model was developed of the hypothalamic-pituitary-gonadal (HPG) axis. Apical reproductive endpoints in the model include plasma steroid hormone and vitellogenin concentrations. Using Markov chain Monte Carlo simulation, the model was calibrated with data from unexposed FHM, and FHM exposed to EE2 and E2. Independent experimental data sets were used to evaluate model predictions. We found good agreement between our model predictions and a variety of measured reproductive endpoints, although the model underpredicts unexposed FHM reproductive endpoint variances, and overpredicts variances in estrogen-exposed FHM. We conclude that this model provides a robust representation of the HPG axis in male FHM.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility