Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Z He
Total Records ( 2 ) for Z He
  H Li , Q Liu , X Hu , D Feng , S Xiang , Z He , J Zhou , X Ding , C Zhou and J. Zhang

Mouse zinc finger CCHC domain containing 12 gene (ZCCHC12) has been identified as a transcriptional co-activator of bone morphogenetic protein (BMP) signaling, and human ZCCHC12 was reported to be related to non-syndromic X-linked mental retardation (NS-XLMR). However, the details of how human ZCCHC12 involve in the NS-XLMR still remain unclear. In this study, we identified a novel nuclear localization signal (NLS) in the middle of human ZCCHC12 protein which is responsible for the nuclear localization. Multiple-tissue northern blot analysis indicated that ZCCHC12 is highly expressed in human brain. Furthermore, in situ hybridization showed that ZCCHC12 is specifically expressed in neuroepithelium of forebrain, midbrain, and diencephalon regions of mouse E10.5 embryos. Luciferase reporter assays demonstrated that ZCCHC12 enhanced the transcriptional activities of activator protein 1 (AP-1) and cAMP response element binding protein (CREB) as a co-activator. In conclusion, we identified a new NLS in ZCCHC12 and figured out that ZCCHC12 functions as a transcriptional co-activator of AP-1 and CREB.

  G Zhang , G Guo , X Hu , Y Zhang , Q Li , R Li , R Zhuang , Z Lu , Z He , X Fang , L Chen , W Tian , Y Tao , K Kristiansen , X Zhang , S Li , H Yang , J Wang and J. Wang

Understanding the dynamics of eukaryotic transcriptome is essential for studying the complexity of transcriptional regulation and its impact on phenotype. However, comprehensive studies of transcriptomes at single base resolution are rare, even for modern organisms, and lacking for rice. Here, we present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative splicing in the rice transcriptome revealed that alternative cis-splicing occurred in ~33% of all rice genes. This is far more than previously reported. In addition, we also identified 234 putative chimeric transcripts that seem to be produced by trans-splicing, indicating that transcript fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell. Taken together, our data provide extensive evidence that transcriptional regulation in rice is vastly more complex than previously believed.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility