Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Yang Zhou
Total Records ( 4 ) for Yang Zhou
  Chaoqun Liu , Yang Zhou , Yunhua Xiao and Guang Sun
  According to the characteristics of hash function, the one-way hash encryption algorithm based on high diophantine equation (RSH) is proposed. RSH not only can be used for password encryption, but also can be used for Data integrity check and the digital signature of message digest. These algorithms hash the arbitrary length message into 128 bits, then make the multi-iterations by high diophantine equation, finally produce the numeral string of 128 bits. In the conversion process, because we do not know the high indefinite equation iterative power law, so the resulting string of numbers is very reliable and safe.
  Maciej F. Boni , Yang Zhou , Jeffery K. Taubenberger and Edward C. Holmes
  To determine the extent of homologous recombination in human influenza A virus, we assembled a data set of 13,852 sequences representing all eight segments and both major circulating subtypes, H3N2 and H1N1. Using an exhaustive search and a nonparametric test for mosaic structure, we identified 315 sequences (~2%) in five different RNA segments that, after a multiple-comparison correction, had statistically significant mosaic signals compatible with homologous recombination. Of these, only two contained recombinant regions of sufficient length (>100 nucleotides [nt]) that the occurrence of homologous recombination could be verified using phylogenetic methods, with the rest involving very short sequence regions (15 to 30 nt). Although this secondary analysis revealed patterns of phylogenetic incongruence compatible with the action of recombination, neither candidate recombinant was strongly supported. Given our inability to exclude the occurrence of mixed infection and template switching during amplification, laboratory artifacts provide an alternative and likely explanation for the occurrence of phylogenetic incongruence in these two cases. We therefore conclude that, if it occurs at all, homologous recombination plays only a very minor role in the evolution of human influenza A virus.
  Jing Zheng , Wan-Hua Shen , Ting-Jia Lu , Yang Zhou , Qian Chen , Zi Wang , Ting Xiang , Yong-Chuan Zhu , Chi Zhang , Shumin Duan and Zhi-Qi Xiong
  Endocytosis of Trk (tropomyosin-related kinase) receptors is critical for neurotrophin signal transduction and biological functions. However, the mechanism governing endocytosis of TrkB (tropomyosin-related kinase B) and the specific contributions of TrkB endocytosis to downstream signaling are unknown. In this study, we report that blocking clathrin, dynamin, or AP2 in cultured neurons of the central nervous system inhibited brain-derived neurotrophic factor (BDNF)-induced activation of Akt but not ERK. Treating neurons with the clathrin inhibitor monodansylcadaverine or a peptide that blocks dynamin function specifically abrogated Akt pathway activation in response to BDNF but did not affect the response of other downstream effectors or the up-regulation of immediate early genes neuropeptide Y and activity-regulated cytoskeleton-associated protein. Similar effects were found in neurons expressing small interfering RNA to silence AP2 or a dominant negative form of dynamin that inhibits clathrin-mediated endocytosis. In PC12 cells, ERK but not Akt activation required TrkA endocytosis following stimulation with nerve growth factor, whereas the opposite was true when TrkA-expressing neurons were stimulated with nerve growth factor in the central nervous system. Thus, the specific effects of internalized Trk receptors probably depend on the presence of cell type-specific modulators of neurotrophin signaling and not on differences inherent to Trk receptors themselves. Endocytosis-dependent activation of Akt in neurons was found to be critical for BDNF-supported survival and dendrite outgrowth. Together, these results demonstrate the functional requirement of clathrin- and dynamin-dependent endocytosis in generating the full intracellular response of neurons to BDNF in the central nervous system.
  Jie-Min Jia , Qian Chen , Yang Zhou , Sheng Miao , Jing Zheng , Chi Zhang and Zhi-Qi Xiong
  The ability of synapses to undergo changes in structure and function in response to alterations of neuronal activity is an essential property of neural circuits. One way that this is achieved is through global changes in the molecular composition of the synapse; however, it is not clear how these changes are coupled to the dynamics of neuronal activity. Here we found that, in cultured rat cortical neurons, bidirectional changes of neuronal activity led to corresponding alterations in the expression of brain-derived neurotrophic factor (BDNF) and phosphorylation of its receptor tropomyosin-related kinase B (TrkB), as well as in the level of synaptic proteins. Exogenous BDNF reversed changes in synaptic proteins induced by chronic activity blockade, while inhibiting Trk kinase activity or depleting endogenous BDNF abolished the concentration changes induced by chronic activity elevation. Both tetrodotoxin and bicuculline had significant, but opposite, effects on synaptic protein ubiquitination in a time-dependent manner. Furthermore, exogenous BDNF was sufficient to increase ubiquitination of synaptic proteins, whereas scavenging endogenous BDNF or inhibiting Trk kinase activity prevented the ubiquitination of synaptic proteins induced by chronic elevation of neuronal activity. Inhibiting the proteasome or blocking protein polyubiquitination mimicked the effect of tetrodotoxin on the levels of synaptic proteins and canceled the effects of BDNF. Our study indicates that BDNF-TrkB signaling acts upstream of the ubiquitin proteasome system, linking neuronal activity to protein turnover at the synapse.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility