Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Yang Shi
Total Records ( 2 ) for Yang Shi
  Wen-Wei Tsai , Thi T. Nguyen , Yang Shi and Michelle Craig Barton
  Despite years of study focused on the tumor suppressor p53, little is understood about its functions in normal, differentiated cells. We found that p53 directly interacts with lysine-specific demethylase 1 (LSD1) to alter chromatin structure and confer developmental repression of the tumor marker alpha-fetoprotein (AFP). Chromatin immunoprecipitation (ChIP) and sequential ChIP of developmentally staged liver showed that p53 and LSD1 cooccupy a p53 response element, concomitant with dimethylated histone H3 lysine 4 (H3K4me2) demethylation and postnatal repression of AFP transcription. In p53-null mice, LSD1 binding is depleted, H3K4me2 is increased, and H3K9me2 remains unchanged compared to those of the wild type, underscoring the specificity of p53-LSD1 complexes in demethylation of H3K4me2. We performed partial hepatectomy of wild-type mouse liver and induced a regenerative response, which led to a loss of p53, increased H3K4me2, and decreased LSD1 interaction at AFP chromatin, in parallel with reactivation of AFP expression. In contrast, nuclear translocation of p53 in mouse embryonic fibroblasts led to p53 interaction with p21/CIP1 chromatin, without recruitment of LSD1, and to activation of p21/CIP1. These findings reveal that LSD1 is targeted to chromatin by p53, likely in a gene-specific manner, and define a molecular mechanism by which p53 mediates transcription repression in vivo during differentiation.
  Su Yeon Shim , Benjamin Adam Samuels , Jian Wang , Gernot Neumayer , Camille Belzil , Ramses Ayala , Yang Shi , Yujiang Shi , Li-Huei Tsai and Minh Dang Nguyen
  Ndel1, the mammalian homologue of the Aspergillus nidulans NudE, is emergently viewed as an integrator of the cytoskeleton. By regulating the dynamics of microtubules and assembly of neuronal intermediate filaments (IFs), Ndel1 promotes neurite outgrowth, neuronal migration, and cell integrity (1–6). To further understand the roles of Ndel1 in cytoskeletal dynamics, we performed a tandem affinity purification of Ndel1-interacting proteins. We isolated a novel Ndel1 molecular complex composed of the IF vimentin, the molecular motor dynein, the lissencephaly protein Lis1, and the cis-Golgi-associated protein αCOP. Ndel1 promotes the interaction between Lis1, αCOP, and the vimentin-dynein complex. The functional result of this complex is activation of dynein-mediated transport of vimentin. A loss of Ndel1 functions by RNA interference fails to incorporate Lis1/αCOP in the complex, reduces the transport of vimentin, and culminates in IF accumulations and altered neuritogenesis. Our findings reveal a novel regulatory mechanism of vimentin transport during neurite extension that may have implications in diseases featuring transport/trafficking defects and impaired regeneration.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility