Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Y. L Zheng
Total Records ( 3 ) for Y. L Zheng
  Y. L Zheng , C. A Loffredo , P. G Shields and S. M. Selim
 

Background: Telomere dysfunction is involved in the development of breast cancer and very short telomeres are frequent genetic alterations in breast tumors. However, the influence of telomere lengths of specific chromosomal arms on the breast cancer risk is unknown. Methods: We conducted a case–control study of breast cancer to examine the associations of the telomere length on chromosome 9 short arms (9p) and long arms (9q) with risk of breast cancer. Chromosome 9 arm-specific telomere lengths were measured by quantitative fluorescent in situ hybridization using cultured blood lymphocytes. Results: Telomere length on chromosome 9p was significantly shorter in breast cancer patients than in control subjects (P < 0.001). Using the 50th percentile value in controls as a cut point, women who have short 9p telomeres had an increased risk of breast cancer [adjusted odds ratio (OR) = 2.6; 95% confidence interval (CI) = 1.5–4.3]. When the 9p telomere length was divided into quartiles, a significant inverse dose–response relationship between 9p telomere length and breast cancer risk was observed (Ptrend < 0.001), with a quartile ORs of 3.0 (95% CI = 1.2–7.5), 3.9 (95% CI = 1.6–9.5) and 6.6 (95% CI = 2.8–15.9) for third, second and first quartile, respectively, when compared with women in the fourth quartile. Conclusions: Short telomere length on chromosome 9p is strongly associated with the risk of breast cancer. If confirmed by future studies, chromosome 9p telomere length has the potential to be incorporated into the current prediction models to significantly enhance breast cancer risk prediction.

  S. E Olivo Marston , L. E Mechanic , S Mollerup , E. D Bowman , A. T Remaley , M. R Forman , V Skaug , Y. L Zheng , A Haugen and C. C. Harris
 

The role of tumor estrogen receptors (ERs) and serum estrogen in lung cancer is inconclusive. We investigated the hypothesis that ERs and functional single-nucleotide polymorphisms in the estrogen biosynthesis pathway are associated with poorer lung cancer survival. Lung cancer patients (n = 305) from a National Cancer Institute-Maryland (NCI-MD) case–case cohort in the Baltimore metropolitan area were used as a test cohort. To validate, 227 cases from the NCI-MD case–control cohort and 293 cases from a Norwegian lung cancer cohort were studied. Information on demographics, tobacco and reproductive histories was collected in an interviewer-administered questionnaire. Serum estrogen, progesterone, tumor messenger RNA expression of hormone receptors and germ line DNA polymorphisms were analyzed for associations with lung cancer survival. Patients in the highest tertile of serum estrogen had worse survival in all three cohorts (P combined < 0.001). Furthermore, the variant allele of estrogen receptor alpha (ER-) polymorphism (rs2228480) was significantly associated with increased tumor ER- levels and worse survival in all three cohorts [hazard ratio (HR) = 2.59, 95% confidence interval (CI): 1.20– 4.01; HR = 1.76, 95% CI: 1.08–2.87 and HR = 2.85, 95% CI: 1.31–4.36). Other polymorphisms associated with lower serum estrogen correlated with improved survival. Results were independent of gender and hormone replacement therapy. We report a significant association of increased serum estrogen with poorer survival among lung cancer male and female patients. Understanding the genetic control of estrogen biosynthesis and response in lung cancer could lead to improved prognosis and therapy.

  T Kino , H Jaffe , N. D Amin , M Chakrabarti , Y. L Zheng , G. P Chrousos and H. C. Pant
 

Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system (CNS) and contribute to memory consolidation and emotional control through their intracellular receptors, the glucocorticoid and mineralocorticoid receptors. Cyclin-dependent kinase 5 (CDK5), on the other hand, plays important roles in the morphogenesis and functions of the central nervous system, and its aberrant activation has been associated with development of neurodegenerative disorders. We previously reported that CDK5 phosphorylated the glucocorticoid receptor and modulated its transcriptional activity. Here we found that CDK5 also regulated mineralocorticoid receptor-induced transcriptional activity by phosphorylating multiple serine and threonine residues located in its N-terminal domain through physical interaction. Aldosterone and dexamethasone, respectively, increased and suppressed mRNA/protein expression of brain-derived neurotrophic factor (BDNF) in rat cortical neuronal cells, whereas the endogenous glucocorticoid corticosterone showed a biphasic effect. CDK5 enhanced the effect of aldosterone and dexamethasone on BDNF expression. Because this neurotrophic factor plays critical roles in neuronal viability, synaptic plasticity, consolidation of memory, and emotional changes, we suggest that aberrant activation of CDK5 might influence these functions through corticosteroid receptors/BDNF.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility