Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Y Zhou
Total Records ( 17 ) for Y Zhou
  L Zhang , Q Liu , Y Zhou and Y. Zhang
 

The male reproductive tracts in different species are characterized by similar patterns of male-dependent overexpression of carboxylesterases. This phenomenon indicates male sex-associated functions of these enzymes for spermatogenesis, sperm maturation, and sperm use. Recently, a novel epididymis-specific gene named Ces7 was cloned and characterized, which belongs to the carboxylesterase family. To study the functions of CES7 in sperm maturation and storage, CES7 recombinant protein was expressed in baculovirus system. The recombinant protein had carboxylesterase activity hydrolyzing cholesterol ester and choline ester. CES7 as carboxylesterase might be involved in ester hydrolysis, sperm maturation, and storage in male reproductive tract.

  L Zhang , Z Hu , C Zhu , Q Liu , Y Zhou and Y. Zhang
 

Carboxylesterases (CEs) represent a multigene family of serine-dependent enzymes. Male-dependent CEs are over-expressed in the male reproductive tract of different animal species (bivalve mollusks, fruit-flies, and mammals). Here, a novel rat epididymis-specific gene named Ces7 was cloned and characterized. It was a novel member of CE family, which was mainly expressed and secreted to the lumens of the corpus and cauda epididymis. CES7 protein was highly glycosylated as other mammalian CEs. Furthermore, Ces7 increased with age growth until sex maturation and then maintained at high level. CES7 might be one of the major CEs in male reproductive tract and contribute to the sperm fertilization.

  Y Zhou , P Lin , Q Li , L Han , H Zheng , Y Wei , Z Cui , Y Ni and X. Guo
 

Sputum is the most common sample collected from patients suffering from lower respiratory tract infections and it is crucial for the bacterial identification of these infections. In this study, we enrolled 101 sputum samples from 101 patients with lower respiratory tract infections. Initially, pyrosequencing of the 16S rDNA V3 hypervariable regions of the bacteria contained in the sputum was utilized as a culture-independent approach for microbiota analysis. For comparison, clinical laboratory tests using a culture-dependent automated bacterial identification system for the same cohort of sputum samples were also done. By pyrosequencing, >70,000 DNA fragments were found and classified into 129 bacterial genera after being analyzed by the Ribosomal Database Project (RDP) process. Most sequences belonged to several predominant genera, such as Streptococcus and Staphylococcus, indicating that these genera play an important role in lower respiratory tract infections. In addition, some sequences belonging to potential causative agents, such as Mycoplasma, Haemophilus, and Moraxella, were also found, but these sequences were not found by clinical laboratory tests. For the nine genera detected by both methods, the methods' sensitivities were compared and the results showed that pyrosequencing was more sensitive, except for Klebsiella and Mycobacterium. Significantly, this method revealed much more complicated bacterial communities and it showed a promising ability for the detection of bacteria.

  C Bian , F Zhang , F Wang , Z Ling , M Luo , H Wu , Y Sun , J Li , B Li , J Zhu , L Tang , Y Zhou , Q Shi , Y Ji , L Tian , G Lin , Y Fan , N Wang and B. Sun
 

DNA immunization is an efficient method for high-affinity monoclonal antibody generation. Here, we describe the generation of several high-quality monoclonal antibodies (mAbs) against retinol-binding protein 4 (RBP4), an important marker for kidney abnormality and dysfunction, with a combination method of DNA priming and protein boost. The mAbs generated could bind to RBP4 with high sensitivity and using these mAbs, an immunocolloidal gold fast test strip was constructed. The strip can give a result in <5 min and is very sensitive with a detection limit of about 1 ng/ml. A small-scale clinical test revealed that the result of this strip was well in accordance with that of an enzyme-labeled immunosorbent assay kit currently available on the market. Consequently, it could be useful for more convenient and faster RBP4 determination in the clinic.

  X Yang , Y Zhou , R Jin and C. Chan
 

Motivation: Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-regulation information of the genes. To address these limitations, we are introducing an alternative method, knowledge-driven matrix factorization (KMF) framework, to reconstruct phenotype-specific modular gene networks.

Results: Considering the reconstruction of gene network as a matrix factorization problem, we first use the gene expression data to estimate a correlation matrix, and then factorize the correlation matrix to recover the gene modules and the interactions between them. Prior knowledge from Gene Ontology is integrated into the matrix factorization. We applied this KMF algorithm to hepatocellular carcinoma (HepG2) cells treated with free fatty acids (FFAs). By comparing the module networks for the different conditions, we identified the specific modules that are involved in conferring the cytotoxic phenotype induced by palmitate. Further analysis of the gene modules of the different conditions suggested individual genes that play important roles in palmitate-induced cytotoxicity. In summary, KMF can efficiently integrate gene expression data with prior knowledge, thereby providing a powerful method of reconstructing phenotype-specific gene networks and valuable insights into the mechanisms that govern the phenotype.

  A Bellacosa , A. K Godwin , S Peri , K Devarajan , E Caretti , L Vanderveer , B Bove , C Slater , Y Zhou , M Daly , S Howard , K. S Campbell , E Nicolas , A. T Yeung , M. L Clapper , J. A Crowell , H. T Lynch , E Ross , L Kopelovich and A. G. Knudson
 

We hypothesized that cells bearing a single inherited "hit" in a tumor suppressor gene express an altered mRNA repertoire that may identify targets for measures that could delay or even prevent progression to carcinoma. We report here on the transcriptomes of primary breast and ovarian epithelial cells cultured from BRCA1 and BRCA2 mutation carriers and controls. Our comparison analyses identified multiple changes in gene expression, in both tissues for both mutations, which were validated independently by real-time reverse transcription-PCR analysis. Several of the differentially expressed genes had been previously proposed as cancer markers, including mammaglobin in breast cancer and serum amyloid in ovarian cancer. These findings show that heterozygosity for a mutant tumor suppressor gene can alter the expression profiles of phenotypically normal epithelial cells in a gene-specific manner; these detectable effects of "one hit" represent early molecular changes in tumorigenesis that may serve as novel biomarkers of cancer risk and as targets for chemoprevention. Cancer Prev Res; 3(1); 48–61

  J Zhang , M Sattler , G Tonon , C Grabher , S Lababidi , A Zimmerhackl , M. S Raab , S Vallet , Y Zhou , M. A Cartron , T Hideshima , Y. T Tai , D Chauhan , K. C Anderson and K. Podar
 

Bone marrow angiogenesis is associated with multiple myeloma (MM) progression. Here, we report high constitutive hypoxia-inducible factor-1 (Hif-1) expression in MM cells, which is associated with oncogenic c-Myc. A drug screen for anti-MM agents that decrease Hif-1 and c-Myc levels identified a variety of compounds, including bortezomib, lenalidomide, enzastaurin, and adaphostin. Functionally, based on transient knockdowns and overexpression, our data delineate a c-Myc/Hif-1–dependent pathway mediating vascular endothelial growth factor production and secretion. The antiangiogenic activity of our tool compound, adaphostin, was subsequently shown in a zebrafish model and translated into a preclinical in vitro and in vivo model of MM in the bone marrow milieu. Our data, therefore, identify Hif-1 as a novel molecular target in MM and add another facet to anti-MM drug activity. [Cancer Res 2009;69(12):5082–90]

  Y Gao , Y He , J Ding , K Wu , B Hu , Y Liu , Y Wu , B Guo , Y Shen , D Landi , S Landi , Y Zhou and H. Liu
 

Hepatocellular carcinoma (HCC) is the fifth most common malignancy caused by environmental and genetic factors. MicroRNAs (miRNAs) are a class of short non-coding RNAs with posttranscriptional regulatory functions. They participate in diverse biological pathways and function as gene regulators. Genetic polymorphisms in 3' untranslated regions (3' UTRs) targeted by miRNAs alter the strength of miRNA binding, with consequences on regulation of target genes thereby affecting the individual's cancer risk. We have previously predicted polymorphisms falling in miRNA-binding regions of cancer genes. We selected an insertion/deletion (Indel) polymorphism (rs3783553) in the 3' UTR of interleukin (IL)-1 (IL1A) for a case–control study in a Chinese population. With samples from 403 HCC patients and 434 healthy control individuals, strong evidence of association was observed for the variant homozygote. This association was validated in a second independent case–control study with 1074 HCC patients and 1239 healthy control individuals (odds ratio = 0.62; 95% confidence interval = 0.49–0.78). We further show that the ‘TTCA’ insertion allele for rs3783553 disrupts a binding site for miR-122 and miR-378, thereby increasing transcription of IL-1 in vitro and in vivo. These findings suggest that functional polymorphism rs3783553 in IL1A could contribute to HCC susceptibility. Considering IL-1 affects not only various phases of the malignant process, such as carcinogenesis, tumor growth and invasiveness, but also patterns of interactions between malignant cells and the host's immune system, our results indicated that IL-1 may be a promising target for immunotherapy, early diagnosis and intervention of HCC.

  W Du , Y Zhou , S Pike and Q. Pang
 

An elevated level of nucleophosmin (NPM) is often found in actively proliferative cells including human tumors. To identify the regulatory role for NPM phosphorylation in proliferation and cell cycle control, a series of mutants targeting the consensus cyclin-dependent kinase (CDK) phosphorylation sites was created to mimic or abrogate either single-site or multi-site phosphorylation. Simultaneous inactivation of two CDK phosphorylation sites at Ser10 and Ser70 (NPM-AA) induced G2/M cell cycle arrest, phosphorylation of Cdk1 at Tyr15 (Cdc2Tyr15) and increased cytoplasmic accumulation of Cdc25C. Strikingly, stress-induced Cdk1Tyr15 and Cdc25C sequestration was suppressed by expression of a phosphomimetic NPM mutant created on the same CDK sites (S10E/S70E, NPM-EE). Further analysis revealed that phosphorylation of NPM at both Ser10 and Ser70 was required for proper interaction between Cdk1 and Cdc25C. Moreover, NPM-EE directly bound to Cdc25C and prevented phosphorylation of Cdc25C at Ser216 during mitosis. Finally, NPM-EE overrided stress-induced G2/M arrest and increased leukemia blasts in a NOD/SCID xenograft model. Thus, these findings reveal a novel function of NPM on regulation of cell cycle progression, in which phosphorylation of NPM controls cell cycle progression at G2/M transition through modulation of Cdk1 and Cdc25C activities.

  N Dong , S Chen , J Yang , L He , P Liu , D Zheng , L Li , Y Zhou , C Ruan , E Plow and Q. Wu
 

Background— Corin is a transmembrane protease that processes natriuretic peptides in the heart. Like many membrane proteins, corin is shed from the cell surface.

Methods and Results— In this study, we obtained plasma samples from healthy controls and patients with heart failure (HF) and acute myocardial infarction. Soluble corin levels in plasma were measured by an ELISA method. In healthy adults (n=198), plasma corin levels were 690 pg/mL (SD, 260 pg/mL). The corin levels did not differ significantly among different age groups. In patients with HF (n=291), plasma corin levels were significantly lower compared with that of healthy controls (365 pg/mL [SD, 259]; P<0.001). The reduction in plasma corin levels seemed to correlate with the severity of HF. In patients of New York Heart Association classes II, III, and IV, plasma corin levels were 450 pg/mL (SD, 281 pg/mL; n=69), 377 pg/mL (SD, 270 pg/mL; n=132), and 282 pg/mL (SD, 194 pg/mL; n=90), respectively (P<0.001 class II vs class IV; P<0.05 class III vs class IV). In contrast, plasma corin levels in patients with acute myocardial infarction (n=73) were similar to that of healthy controls (678 pg/mL [SD, 285 pg/mL]; P>0.05).

Conclusions— Soluble corin was detected in human plasma. Plasma corin levels were reduced significantly in patients with HF but not in those with acute myocardial infarction. Our results indicate that corin deficiency may contribute to the pathogenesis of HF and that plasma corin may be used as a biomarker in the diagnosis of HF.

  C Li , M Kuchimanchi , D Hickman , L Poppe , M Hayashi , Y Zhou , R Subramanian , G Kumar and S. Surapaneni
 

Motesanib diphosphate is a novel, investigational, highly selective oral inhibitor of the receptor tyrosine kinases vascular endothelial growth factor receptors 1, 2, and 3, the platelet-derived growth factor receptor, and the stem cell factor receptor (Kit). The in vitro metabolic profiles of [14C]motesanib were examined by using microsomes and hepatocytes from preclinical species and humans. Several oxidative metabolites were observed and characterized by tandem mass spectrometry, nuclear magnetic resonance spectroscopy, and coinjection with authentic standards. Cytochrome P450 (P450) 3A4 is the major isozyme involved in the oxidative biotransformation of motesanib, but the CYP2D6 and CYP1A isozymes also make minor contributions. In hepatocyte incubations, oxidative and conjugative pathways were observed for all species examined, and indoline N-glucuronidation was the dominant pathway. Three less common and novel phase II conjugates of the indoline nitrogen were detected in hepatocytes and in microsomes supplemented with specific cofactors, including N-carbamoyl glucuronide, N-glucose, and N-linked β-N-acetylglucosamine. An N-glucuronide metabolite was the most frequently observed phase II conjugate in liver microsomes of all species, whereas the N-acetylglucosamine conjugate was observed only in monkey liver microsomes. Incubations with recombinant human UDP-glucuronosyltransferases (UGTs) and inhibition by the UGT1A4 and UGT1A1 substrates/inhibitors imipramine and bilirubin suggested that UGT1A4 is the major UGT isozyme catalyzing the N-glucuronidation of motesanib, with a minor contribution from UGT1A1. The in vitro metabolic profiles were similar between the human and preclinical species examined. All metabolites found in humans were also detected in other species.

  C Li , M Kuchimanchi , D Hickman , L Poppe , M Hayashi , Y Zhou , R Subramanian , G Kumar and S. Surapaneni
 

Motesanib diphosphate is a novel, investigational, highly selective oral inhibitor of the receptor tyrosine kinases vascular endothelial growth factor receptors 1, 2, and 3, the platelet-derived growth factor receptor, and the stem cell factor receptor (Kit). The in vitro metabolic profiles of [14C]motesanib were examined by using microsomes and hepatocytes from preclinical species and humans. Several oxidative metabolites were observed and characterized by tandem mass spectrometry, nuclear magnetic resonance spectroscopy, and coinjection with authentic standards. Cytochrome P450 (P450) 3A4 is the major isozyme involved in the oxidative biotransformation of motesanib, but the CYP2D6 and CYP1A isozymes also make minor contributions. In hepatocyte incubations, oxidative and conjugative pathways were observed for all species examined, and indoline N-glucuronidation was the dominant pathway. Three less common and novel phase II conjugates of the indoline nitrogen were detected in hepatocytes and in microsomes supplemented with specific cofactors, including N-carbamoyl glucuronide, N-glucose, and N-linked β-N-acetylglucosamine. An N-glucuronide metabolite was the most frequently observed phase II conjugate in liver microsomes of all species, whereas the N-acetylglucosamine conjugate was observed only in monkey liver microsomes. Incubations with recombinant human UDP-glucuronosyltransferases (UGTs) and inhibition by the UGT1A4 and UGT1A1 substrates/inhibitors imipramine and bilirubin suggested that UGT1A4 is the major UGT isozyme catalyzing the N-glucuronidation of motesanib, with a minor contribution from UGT1A1. The in vitro metabolic profiles were similar between the human and preclinical species examined. All metabolites found in humans were also detected in other species.

  J. G Bromer , J Wu , Y Zhou and H. S. Taylor
 

Diethylstilbestrol (DES) is a nonsteroidal estrogen that induces developmental anomalies of the female reproductive tract. The homeobox gene HOXA10 controls uterine organogenesis, and its expression is altered after in utero DES exposure. We hypothesized that an epigenetic mechanism underlies DES-mediated alterations in HOXA10 expression. We analyzed the expression pattern and methylation profile of HOXA10 after DES exposure. Expression of HOXA10 is increased in human endometrial cells after DES exposure, whereas Hoxa10 expression is repressed and shifted caudally from its normal location in mice exposed in utero. Cytosine guanine dinucleotide methylation frequency in the Hoxa10 intron was higher in DES-exposed offspring compared with controls (P = 0.017). The methylation level of Hoxa10 was also higher in the caudal portion of the uterus after DES exposure at the promoter and intron (P < 0.01). These changes were accompanied by increased expression of DNA methyltransferases 1 and 3b. No changes in methylation were observed after in vitro or adult DES exposure. DES has a dual mechanism of action as an endocrine disruptor; DES functions as a classical estrogen and directly stimulates HOXA10 expression with short-term exposure, however, in utero exposure results in hypermethylation of the HOXA10 gene and long-term altered HOXA10 expression. We identify hypermethylation as a novel mechanism of DES-induced altered developmental programming.

  Y Zhou , P Pan , L Yao , M Su , P He , N Niu , M. A McNutt and J. Gu
 

Human cardiac stem/progenitor cells and their potential for repair of heart injury are a current hot topic of research. CD117 has been used frequently as a marker for identification of stem/progenitor cells in the heart. However, cardiac mast cells, which are also CD117+, have not been excluded by credible means when selecting putative cardiac progenitors by using CD117 as a marker. We evaluated the relationship between CD117+ cells and mast cells in the left ventricle of human hearts (n=5 patients, ages 1 week–75 years) with the well-established mast cell markers tryptase, toluidine blue, and thionine. A large number (85–100%) of CD117+ cells in the human heart were specifically identified as mast cells. In addition, mast cells showed weak or moderate CD45 immunostaining signals. These results indicate that the majority of CD117+ cells in the heart are mast cells and that these cells are distinctly positive for CD45, although staining was weak or moderate. These results strongly suggest that the newly reported CD117+/CD45dim/moderate putative cardiac progenitor cells are mast cells. The significance of this observation in stem cell research of the heart is discussed. (J Histochem Cytochem 58:309–316, 2010)

  Y Han , J. D Chen , Z. M Liu , Y Zhou , J. H Xia , X. L Du and M. W. Jin
 

Cardiac c-kit+ cells are generally believed to be the major population of stem/progenitor cells in the heart and can be used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not understood in this type of cells. The present study was designed to investigate functional ion channels in undifferentiated mouse cardiac c-kit+ cells using approaches of whole cell patch voltage clamp, RT-PCR, and cell proliferation assay. It was found that three types of ionic currents were present in mouse cardiac c-kit+ cells, including a delayed rectifier K+ current (IKDR) inhibited by 4-aminopyridine (4-AP), an inward rectifier K+ current (IKir) decreased by Ba2+, and a volume-sensitive chloride current (ICl.vol) inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB). RT-PCR revealed that the corresponding ion channel genes, Kv1.1, Kv1.2, and Kv1.6 (for IKDR), Kir.1.1, Kir2.1, and Kir2.2 (likely responsible for IKir), and Clcn3 (for ICl.vol), were significant in mouse cardiac c-kit+ cells. The inhibition of ICl.vol with NPPB and niflumic acid, but not IKDR with 4-AP and tetraethylammonium, reduced cell proliferation and accumulated the cell progression at G0/G1 phase in mouse cardiac c-kit+ cells. Our results demonstrate that three types of functional ion channel currents (i.e., IKDR, IKir, and ICl.vol) are present in mouse cardiac c-kit+ cells, and ICl.vol participates in regulating cell proliferation.

  Y Zhou , Q. Y Tang , X. M Xia and C. J. Lingle
 

The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca2+- and voltage-activated Slo1 (or BK) K+ channels. The pH-regulated Slo3 K+ channel, a Slo1 homologue, is resistant to blockade by paxilline. Taking advantage of the marked differences in paxilline sensitivity and the homology between subunits, we have examined the paxilline sensitivity of a set of chimeric Slo1/Slo3 subunits. Paxilline sensitivity is associated with elements of the S5–P loop–S6 module of the Slo1 channel. Replacement of the Slo1 S5 segment or the second half of the P loop results in modest changes in paxilline sensitivity. Replacing the Slo1 S6 segment with the Slo3 sequence abolishes paxilline sensitivity. An increase in paxilline affinity and changes in block kinetics also result from replacing the first part of the Slo1 P loop, the so-called turret, with Slo3 sequence. The Slo1 and Slo3 S6 segments differ at 10 residues. Slo1-G311S was found to markedly reduce paxilline block. In constructs with a Slo3 S6 segment, S300G restored paxilline block, but most effectively when paired with a Slo1 P loop. Other S6 residues differing between Slo1 and Slo3 had little influence on paxilline block. The involvement of Slo1 G311 in paxilline sensitivity suggests that paxilline may occupy a position within the central cavity or access its blocking position through the central cavity. To explain the differences in paxilline sensitivity between Slo1 and Slo3, we propose that the G311/S300 position in Slo1 and Slo3 underlies a structural difference between subunits in the bend of S6, which influences the occupancy by paxilline.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility