Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Y Wu
Total Records ( 17 ) for Y Wu
  Y Wu , W Xu , G Huang , S Gong , J Li , Y Qin and X. Li
 

Arabinogalactan proteins (AGPs) are a large family of highly glycosylated of hydroxyproline-rich glycoproteins that play important roles in plant growth, development, and signal transduction. A cDNA encoding a putative classical AGP named GhH6L was isolated from cotton fiber cDNA libraries, and the deduced protein contains 17 copies of repetitive motif of X–Y–proline–proline–proline (where X is serine or alanine and Y is threonine or serine). Northern blotting analysis and quantitative RT–PCR results showed that it was preferentially expressed in 10 days post-anthesis (dpa) fibers and was also developmentally regulated. A promoter fragment was isolated from cotton (Gossypium hirsutum) by genome walking PCR. Expression of β-glucuronidase (GUS) gene under the GhH6L promoter was examined in the transgenic Arabidopsis plants; only petiole and pedicel were stained, no staining was detected in other tissues. Subcellular localization indicated that GhH6L was localized to the plasma membrane and in the cytoplasm. These data further our understanding of GhH6L as well as shed light on functional insight to GhH6L in cotton.

  J Xiao , S Yin , Y Li , S Xie , D Nie , L Ma , X Wang , Y Wu and J. Feng
 

S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  H Zhao , Y Wang , Y Wu , X Li , G Yang , X Ma , R Zhao and H. Liu
 

Hyperlipidemia is regarded as an independent risk factor in the development of ischemic heart disease, and it can increase the myocardial susceptibility to ischemia/reperfusion (I/R) injury. Ischemic postconditioning (Postcon) has been demonstrated to attenuate the myocardial injury induced by I/R in normal conditions. But the effect of ischemic Postcon on hyperlipidemic animals is unknown. Hypoxia inducible factor-1 (HIF-1) has been demonstrated to play a central role in the cardioprotection by preconditioning, which is one of the protective strategies except for Postcon. The aim of this study was to determine whether Postcon could reduce myocardial injury in hyperlipidemic animals and to assess whether HIF-1 was involved in Postcon mechanisms. Male Wistar rats underwent the left anterior descending coronary occlusion for 30 min followed by 180 min of reperfusion with or without Postcon after fed with high fat diet or normal diet for 8 weeks. The detrimental indices induced by the I/R insult included infarct size, plasma creatine kinase activity and caspase-3 activity. Results showed that hyperlipidemia remarkably enhanced the myocardial injury induced by I/R, while Postcon significantly decreased the myocardial injury in both normolipidemic and hyperlipidemic rats. Moreover, both hyperlipidemia and I/R promoted the HIF-1 expression. Most importantly, we have for the first time demonstrated that Postcon further induced a significant increase in HIF-1 protein level not only in normolipidemic but also in hyperlipidemic conditions. Thus, Postcon reduces the myocardial injury induced by I/R in normal and hyperlipidemic animals, and HIF-1 upregulation may involve in the Postcon-mediated cardioprotective mechanisms.

  Y Wu , W Zhang , Y Yang , B Yu and A. Huang
 

In this study, we scanned the whole hepatitis B virus (HBV) genome for the identification of potential regulatory elements located on the S-(+)-strand. With pCDNA3.1-HBV1.3 as template which contains 1.3-fold HBV whole genome, HBV fragments were amplified by PCR methods, and then inserted into the upstream of a heterologous luciferase reporter vector (pGL3control) in antisense orientation, allowing the HBV expression from the S-(+)-strand. We found that the reporter plasmid containing nt 509-1(3182)-2639 of HBV inhibited luciferase gene transcription and expression in HepG2 cells. Our results strongly suggested that nt 453–250 of HBV may act as a novel negative regulatory element, which has not been reported before. Serial deletion analyses further indicated that nt 453–250 sequence of HBV genome would be the minimal sequence essential for the inhibitory effect of the novel negative regulatory element.

  M. I Frisard , R. P McMillan , J Marchand , K. A Wahlberg , Y Wu , K. A Voelker , L Heilbronn , K Haynie , B Muoio , L Li and M. W. Hulver
 

Toll-like receptor 4 (TLR4), a protein integral to innate immunity, is elevated in skeletal muscle of obese and type 2 diabetic humans and has been implicated in the development of lipid-induced insulin resistance. The purpose of this study was to examine the role of TLR4 as a modulator of basal (non-insulin-stimulated) substrate metabolism in skeletal muscle with the hypothesis that its activation would result in reduced fatty acid oxidation and increased partitioning of fatty acids toward neutral lipid storage. Human skeletal muscle, rodent skeletal muscle, and skeletal muscle cell cultures were employed to study the functional consequences of TLR4 activation on glucose and fatty acid metabolism. Herein, we demonstrate that activation of TLR4 with low (metabolic endotoxemia) and high (septic conditions) doses of LPS results in increased glucose utilization and reduced fatty acid oxidation in skeletal muscle and that these changes in metabolism in vivo occur in concert with increased circulating triglycerides. Moreover, animals with a loss of TLR4 function possess increased oxidative capacity in skeletal muscle and present with lower fasting levels of triglycerides and nonesterified free fatty acids. Evidence is also presented to suggest that these changes in substrate metabolism under metabolic endotoxemic conditions are independent of skeletal muscle-derived proinflammatory cytokine production. This report illustrates that skeletal muscle is a target for circulating endotoxin and may provide critical insight into the link between a proinflammatory state and dysregulated metabolism as observed with obesity, type 2 diabetes, and metabolic syndrome.

  Y Wu , X Feng , Y Jin , Z Wu , W Hankey , C Paisie , L Li , F Liu , S. H Barsky , W Zhang , R Ganju and X. Zou
 

The natural compound indole-3-carbinol (I3C; found in vegetables of the genus Brassica) is a promising cancer prevention or therapy agent. The cell division cycle 25A (Cdc25A) phosphatase is overexpressed in a variety of human cancers and other diseases. In the present study, I3C induced degradation of Cdc25A, arrest of the G1 cell cycle, and inhibition of the growth of breast cancer cells. We also showed that the Ser124 site of Cdc25A, which is related to cyclin-dependent kinase 2, is required for I3C-induced degradation of Cdc25A in breast cancer cells, and that interruption of the ATM-Chk2 pathway suppressed I3C-induced destruction of Cdc25A. Our in vivo studies of different mutated forms of Cdc25A found that the mutation Cdc25AS124A (Ser124 to Ala124), which confers resistance to I3C-induced degradation of Cdc25A, attenuated I3C inhibition of breast tumorigenesis in a mouse xenograft model. The present in vitro and in vivo studies together show that I3C-induced activation of the ATM-Chk2 pathway and degradation of Cdc25A represent a novel molecular mechanism of I3C in arresting the G1 cell cycle and inhibiting the growth of breast cancer cells. The finding that I3C induces Cdc25A degradation underscores the potential use of this agent for preventing and treating cancers and other human diseases with Cdc25A overexpression. Cancer Prev Res; 3(7); 818–28. ©2010 AACR.

  Y Gao , Y He , J Ding , K Wu , B Hu , Y Liu , Y Wu , B Guo , Y Shen , D Landi , S Landi , Y Zhou and H. Liu
 

Hepatocellular carcinoma (HCC) is the fifth most common malignancy caused by environmental and genetic factors. MicroRNAs (miRNAs) are a class of short non-coding RNAs with posttranscriptional regulatory functions. They participate in diverse biological pathways and function as gene regulators. Genetic polymorphisms in 3' untranslated regions (3' UTRs) targeted by miRNAs alter the strength of miRNA binding, with consequences on regulation of target genes thereby affecting the individual's cancer risk. We have previously predicted polymorphisms falling in miRNA-binding regions of cancer genes. We selected an insertion/deletion (Indel) polymorphism (rs3783553) in the 3' UTR of interleukin (IL)-1 (IL1A) for a case–control study in a Chinese population. With samples from 403 HCC patients and 434 healthy control individuals, strong evidence of association was observed for the variant homozygote. This association was validated in a second independent case–control study with 1074 HCC patients and 1239 healthy control individuals (odds ratio = 0.62; 95% confidence interval = 0.49–0.78). We further show that the ‘TTCA’ insertion allele for rs3783553 disrupts a binding site for miR-122 and miR-378, thereby increasing transcription of IL-1 in vitro and in vivo. These findings suggest that functional polymorphism rs3783553 in IL1A could contribute to HCC susceptibility. Considering IL-1 affects not only various phases of the malignant process, such as carcinogenesis, tumor growth and invasiveness, but also patterns of interactions between malignant cells and the host's immune system, our results indicated that IL-1 may be a promising target for immunotherapy, early diagnosis and intervention of HCC.

  Y Dong , B Lu , X Zhang , J Zhang , L Lai , D Li , Y Wu , Y Song , J Luo , X Pang , Z Yi and M. Liu
 

Cucurbitacin E (CuE, -elaterin), a tetracyclic triterpenes compound from folk traditional Chinese medicine plants, has been shown to inhibit cancer cell growth, inflammatory response and bilirubin–albumin binding. However, the effects of CuE on tumor angiogenesis and its potential molecular mechanism are still unknown. Here, we demonstrated that CuE significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration and tubulogenesis in vitro and blocked angiogenesis in chick embryo chorioallantoic membrane assay and mouse corneal angiogenesis model in vivo. Furthermore, we found that CuE remarkably induced HUVEC apoptosis, inhibited tumor angiogenesis and suppressed human prostate tumor growth in xenograft tumor model. Finally, we showed that CuE blocked vascular endothelial growth factor receptor (VEGFR) 2-mediated Janus kinase (Jak) 2–signal transducer and activator of transcription (STAT) 3 signaling pathway in endothelial cells and suppressed the downstream protein kinases, such as extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Therefore, our studies provided the first evidence that CuE inhibited tumor angiogenesis by inhibiting VEGFR2-mediated Jak–STAT3 and mitogen-activated protein kinases signaling pathways and CuE is a potential candidate in angiogenesis-related disease therapy.

  A. I Nykanen , H Sandelin , R Krebs , M. A. I Keranen , R Tuuminen , T Karpanen , Y Wu , B Pytowski , P. K Koskinen , S Yla Herttuala , K Alitalo and K. B. Lemstrom
 

Background— Lymphatic network and chemokine-mediated signals are essential for leukocyte traffic during the proximal steps of alloimmune response. We aimed to determine the role of lymphatic vessels and their principal growth signaling pathway, vascular endothelial growth factor (VEGF)-C/D/VEGFR-3, during acute and chronic rejection in cardiac allografts.

Methods and Results— Analysis of heterotopically transplanted rat cardiac allografts showed that chronic rejection increased VEGF-C+ inflammatory cell and hyaluronan receptor-1 (LYVE-1)+ lymphatic vessel density. Allograft lymphatic vessels were VEGFR-3+, contained antigen-presenting cells, and produced dendritic cell chemokine CCL21. Experiments with VEGFR-3/LacZ mice or mice with green fluorescent protein–positive bone marrow cells as cardiac allograft recipients showed that allograft lymphatic vessels originated almost exclusively from donor cells. Intraportal adenoviral VEGFR-3-Ig (Ad.VEGFR-3-Ig/VEGF-C/D-Trap) perfusion was used to inhibit VEGF-C/D/VEGFR-3 signaling. Recipient treatment with Ad.VEGFR-3-Ig prolonged rat cardiac allograft survival. Ad.VEGFR-3-Ig did not affect allograft lymphangiogenesis but was linked to reduced CCL21 production and CD8+ effector cell entry in the allograft. Concomitantly, Ad.VEGFR-3-Ig reduced OX62+ dendritic cell recruitment and increased transcription factor Foxp3 expression in the spleen. In separate experiments, treatment with a neutralizing monoclonal VEGFR-3 antibody reduced arteriosclerosis, the number of activated lymphatic vessels expressing VEGFR-3 and CCL21, and graft-infiltrating CD4+ T cells in chronically rejecting mouse cardiac allografts.

Conclusions— These results show that VEGFR-3 participates in immune cell traffic from peripheral tissues to secondary lymphoid organs by regulating allograft lymphatic vessel CCL21 production and suggest VEGFR-3 inhibition as a novel lymphatic vessel–targeted immunomodulatory therapy for cardiac allograft rejection and arteriosclerosis.

  D Hu , H Barajas Martinez , E Burashnikov , M Springer , Y Wu , A Varro , R Pfeiffer , T. T Koopmann , J. M Cordeiro , A Guerchicoff , G. D Pollevick and C. Antzelevitch
 

Background— Brugada syndrome, characterized by ST-segment elevation in the right precordial ECG leads and the development of life-threatening ventricular arrhythmias, has been associated with mutations in 6 different genes. We identify and characterize a mutation in a new gene.

Methods and Results— A 64-year-old white male displayed a type 1 ST-segment elevation in V1 and V2 during procainamide challenge. Polymerase chain reaction-based direct sequencing was performed using a candidate gene approach. A missense mutation (L10P) was detected in exon 1 of SCN3B, the β3 subunit of the cardiac sodium channel, but not in any other gene known to be associated with Brugada syndrome or in 296 controls. Wild-type (WT) and mutant genes were expressed in TSA201 cells and studied using whole-cell patch-clamp techniques. Coexpression of SCN5A/WT+SCN1B/WT+SCN3B/L10P resulted in an 82.6% decrease in peak sodium current density, accelerated inactivation, slowed reactivation, and a –9.6-mV shift of half-inactivation voltage compared with SCN5A/WT+SCN1B/WT+SCN3B/WT. Confocal microscopy revealed that SCN5A/WT channels tagged with green fluorescent protein are localized to the cell surface when coexpressed with WT SCN1B and SCN3B but remain trapped in intracellular organelles when coexpressed with SCN1B/WT and SCN3B/L10P. Western blot analysis confirmed the presence of NaVβ3 in human ventricular myocardium.

Conclusions— Our results provide support for the hypothesis that mutations in SCN3B can lead to loss of transport and functional expression of the hNav1.5 protein, leading to reduction in sodium channel current and clinical manifestation of a Brugada phenotype.

  Y Wu , L Yang , T Su , C Wang , G Liu and X. m. Li
 

Background and objectives: Although a renal biopsy is indispensable for depicting the severity of pathologic lesions in drug-induced tubulointerstitial nephritis (DTIN), it is not acceptable in some cases and cannot be performed serially because of its invasive nature. Therefore, the discovery of noninvasive markers that are closely related to the pathology of DTIN is of great value.

Design, setting, participants, & measurements: In this study, the urinary levels of monocyte chemotactic peptide-1 (MCP-1), neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-β-d-glucosaminidase, and 1-microglobulin were measured in 40 DTIN subjects, and the performances of these parameters for distinguishing different pathologic lesions were compared.

Results: Linear correlation and receiver operating characteristic curve analyses showed that urinary MCP-1 levels were able to identify serious interstitial edema and inflammatory infiltration with greater accuracy than the other biomarkers (r = 0.501, P < 0.001 and r = 0.768, P < 0.001, respectively), whereas urinary NGAL levels showed the highest correlation coefficient with tubular atrophy (r = 0.692, P < 0.001).

Conclusions: These results suggest that these biomarker levels were higher in patients with DTIN than in controls. Urinary MCP-1 levels correlated and were predictive of the gradated severity of acute lesions in DTIN, whereas the roles of NGAL and 1-microglobulin in chronic alterations require further study.

  Z Xing , C Lu , D Hu , Y. y Yu , X Wang , C Colnot , M Nakamura , Y Wu , T Miclau and R. S. Marcucio
  Zhiqing Xing, Chuanyong Lu, Diane Hu, Yan-yiu Yu, Xiaodong Wang, Celine Colnot, Mary Nakamura, Yalei Wu, Theodore Miclau, and Ralph S. Marcucio

Bone injury induces an inflammatory response that involves neutrophils, macrophages and other inflammatory cells. The recruitment of inflammatory cells to sites of injury occurs in response to specific signaling pathways. The CC chemokine receptor type 2 (CCR2) is crucial for recruiting macrophages, as well as regulating osteoclast function. In this study, we examined fracture healing in Ccr2–/– mice. We first demonstrated that the expression of Ccr2 transcripts and the filtration of macrophages into fracture calluses were most robust during the early phases of fracture healing. We then determined that the number of macrophages at the fracture site was significantly lower in Ccr2–/– mice compared with wild-type controls at 3 days after injury. As a result, impaired vascularization, decreased formation of callus, and delayed maturation of cartilage were observed at 7 days after injury in mutant mice. At day 14, Ccr2–/– mice had less bone in their calluses. At day 21, Ccr2–/– mice had larger calluses and more bone compared with wild-type mice, suggesting a delayed remodeling. In addition, we examined the effect of Ccr2 mutation on osteoclasts. We found that a lack of Ccr2 did not affect the number of osteoclasts within fracture calluses at 21 days after injury. However, Ccr2–/– osteoclasts exhibited a decreased ability to resorb bone compared with wild-type cells, which could contribute to the delayed remodeling of fracture calluses observed in Ccr2–/– mice. Collectively, these results indicate that a deficiency of Ccr2 reduces the infiltration of macrophages and impairs the function of osteoclasts, leading to delayed fracture healing.

  Y Wu , M. E. M El Shikh , R. M El Sayed , A. M Best , A. K Szakal and J. G. Tew
 

Reports that follicular dendritic cells (FDCs) produce IL-6 prompted the hypotheses that immune complexes (ICs) induce FDCs to produce IL-6 and that FDC–IL-6 promotes germinal center (GC) reactions, somatic hypermutation (SHM) and IgG production. FDCs were activated in vitro by addition of ICs and FDC–IL-6 production was determined. Wild-type (WT) and IL-6 knockout (KO) mice, as well as chimeras with WT and IL-6 KO cells, were immunized with (4-hydroxy-3-nitrophenyl)-acetyl (NP)–chicken gamma globulin (CGG) and used to study anti-(4-hydroxy-3-iodo-5-nitrophenyl) acetyl (NIP) responses, GC formation and SHM in the VH186.2 gene segment in Ig-gamma. FDC–IL-6 increased when FDCs encountered ICs. At low immunogen dose, 1 µg NP–CGG per mouse, the IgG anti-NIP response in IL-6 KO mice was low and immunohistochemistry revealed a reduction in both the number and size of GCs. The physiological relevance of FDC–IL-6 was apparent in the chimeric mice where total splenocytes from WT mice were unable to provide the IL-6 needed for normal IgG and GC responses in IL-6 KO animals with IL-6-defective FDCs. Moreover, the rate of mutation decreased from 18 to 8.9 mutations per 1000 bases (P < 0.001) in WT versus IL-6 KO mice. Addition of anti-IL-6 to GC reactions in vitro reduced antibody levels and SHM from 3.5 to 0.65 mutations per 1000 bases (P < 0.02). Thus, the absence of FDC–IL-6 correlated with a reduction in SHM that coincided with the reduction in GCs and specific anti-NIP. This is the first study to document that ICs induce FDC–IL-6 and that FDC-derived IL-6 is physiologically relevant in generating optimal GC reactions, SHM and IgG levels.

  Y Wu , H Li , R. J. F Loos , Q Qi , F. B Hu , Y Liu and X. Lin
 

We previously found that plasma RBP4 levels were strongly associated with metabolic syndrome components. This study aimed to determine whether RBP4 variants are associated with the metabolic syndrome components and plasma RBP4 levels, and to investigate whether the associations between plasma RBP4 and the metabolic syndrome components are causal. Five tagSNPs were tested for their associations with plasma RBP4 levels and metabolic syndrome components in a population-based sample of 3,210 Chinese Hans. A possible causal relationship between plasma RBP4 levels and hypertriglyceridemia was explored by Mendelian randomization. Plasma RBP4 levels were significantly associated with rs10882273 (βz –0.10SD[–0.17, –0.03], P = 0.0050), rs3758538 (βz –0.13SD[–0.24, –0.02], P = 0.0249) in all participants, and with rs17108993 in Shanghai participants (βz –0.19SD[–0.32, –0.05], P = 0.0061). The single nucleotide polymorphism (SNP) rs3758538 was significantly associated with hypertriglyceridemia (OR 0.62[0.45–0.85], P = 0.0026) and triglycerides (βz –0.19SD[–0.30, –0.07], P = 0.001) in all participants. In Mendelian randomization analysis, the observed effect size of association between rs3758538 and hypertriglyceridemia was different from the expected effect size (P = 0.0213). This is the first study to show that the RBP4 variants are significantly associated with plasma RBP4 levels and hypertriglyceridemia risk in Chinese Hans. However, results of Mendelian randomization do not support the hypothesis that RBP4 levels are causally related to hypertriglyceridemia risk.

  Z Huang , Y Shi , B Cai , L Wang , Y Wu , B Ying , L Qin , C Hu and Y. Li
 

Objectives. To discover novel potential biomarkers and establish a diagnostic pattern for SLE by using proteomic technology.

Methods. Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with weak cationic exchange magnetic beads. A training set of spectra, derived from analysing sera from 32 patients with SLE, 43 patients with other autoimmune diseases and 43 age- and sex-matched healthy volunteers, was used to train and develop a decision tree model with a machine learning algorithm called decision boosting. A blinded testing set, including 32 patients with SLE, 42 patients with other autoimmune diseases and 40 healthy people, was used to determine the accuracy of the model.

Results. The diagnostic pattern with a panel of four potential protein biomarkers of mass-to-charge (m/z) ratio 4070.09, 7770.45, 28 045.1 and 3376.02 could accurately recognize 25 of 32 patients with SLE, 36 of 42 patients with other autoimmune diseases and 36 of 40 healthy people.

Conclusions. The preliminary data suggested a potential application of MALDI-TOF MS combined with magnetic beads as an effective technology to profile serum proteome, and with pattern analysis, a diagnostic model comprising four potential biomarkers was indicated to differentiate individuals with SLE from RA, SS, SSc and healthy controls rapidly and precisely.

  S. B.C Buonomo , Y Wu , D Ferguson and T. de Lange
 

Multifunctional protein Rif1 accumulates at stalled replication forks to facilitate DNA repair during S phase.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility