Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Y Sakai
Total Records ( 3 ) for Y Sakai
  J Xu , M Futakuchi , M Iigo , K Fukamachi , D. B Alexander , H Shimizu , Y Sakai , S Tamano , F Furukawa , T Uchino , H Tokunaga , T Nishimura , A Hirose , J Kanno and H. Tsuda

Titanium dioxide (TiO2) is evaluated by World Health Organization/International Agency for Research on Cancer as a Group 2B carcinogen. The present study was conducted to detect carcinogenic activity of nanoscale TiO2 administered by a novel intrapulmonary spraying (IPS)-initiation–promotion protocol in the rat lung. Female human c-Ha-ras proto-oncogene transgenic rat (Hras128) transgenic rats were treated first with N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water and then with TiO2 (rutile type, mean diameter 20 nm, without coating) by IPS. TiO2 treatment significantly increased the multiplicity of DHPN-induced alveolar cell hyperplasias and adenomas in the lung, and the multiplicity of mammary adenocarcinomas, confirming the effectiveness of the IPS-initiation–promotion protocol. TiO2 aggregates were localized exclusively in alveolar macrophages and had a mean diameter of 107.4 nm. To investigate the underlying mechanism of its carcinogenic effects, TiO2 was administered to wild-type rats by IPS five times over 9 days. TiO2 treatment significantly increased 8-hydroxydeoxy guanosine level, superoxide dismutase activity and macrophage inflammatory protein 1 (MIP1) expression in the lung. MIP1, detected in the cytoplasm of TiO2-laden alveolar macrophages in vivo and in the media of rat primary alveolar macrophages treated with TiO2 in vitro, enhanced proliferation of human lung cancer cells. Furthermore, MIP1, also detected in the sera and mammary adenocarcinomas of TiO2-treated Hras128 rats, enhanced proliferation of rat mammary carcinoma cells. These data indicate that secreted MIP1 from TiO2-laden alveolar macrophages can cause cell proliferation in the alveoli and mammary gland and suggest that TiO2 tumor promotion is mediated by MIP1 acting locally in the alveoli and distantly in the mammary gland after transport via the circulation.

  H Ootsuji , M Honda , S Kaneko , S Usui , M Okajima , H Okada , Y Sakai , T Takamura , K Horimoto and M. Takamura

Background— Acute coronary syndrome is sometimes accompanied by accelerated coagulability, lipid metabolism, and inflammatory responses, which are not attributable to the cardiac events alone. We hypothesized that the liver plays a pivotal role in the pathophysiology of acute coronary syndrome. We simultaneously analyzed the gene expression profiles of the liver and heart during acute myocardial ischemia in mice.

Methods and Results— –Mice were divided into 3 treatment groups: sham operation, ischemia/reperfusion, and myocardial infarction. Mice with liver ischemia/reperfusion were included as additional controls. Marked changes in hepatic gene expression were observed after 24 hours, despite the lack of histological changes in the liver. Genes related to tissue remodeling, adhesion molecules, and morphogenesis were significantly upregulated in the livers of mice with myocardial ischemia/reperfusion or infarction but not in those with liver ischemia/reperfusion. Myocardial ischemia, but not changes in the hemodynamic state, was postulated to significantly alter hepatic gene expression. Moreover, detailed analysis of the signaling pathway suggested the presence of humoral factors that intervened between the heart and liver. To address these points, we used isolated primary hepatocytes and showed that osteopontin released from the heart actually altered the signaling pathways of primary hepatocytes to those observed in the livers of mice under myocardial ischemia. Moreover, osteopontin stimulated primary hepatocytes to secrete vascular endothelial growth factor-A, which is important for tissue remodeling.

Conclusions— Hepatic gene expression is potentially regulated by cardiac humoral factors under myocardial ischemia. These results provide new insights into the pathophysiology of acute coronary syndrome.

  J. L Clever , Y Sakai , R. A Wang and D. B. Schneider

The bone morphogenetic protein (BMP) pathway is known to be involved in limb myogenesis during development, but whether it is involved in postnatal muscle regeneration is unclear. We have found that adult inhibitor of differentiation (Id)-mutant (Id1+/–Id3–/–) mice display delayed and reduced skeletal muscle regeneration after injury compared with either wild-type littermates or Id3-null mice. Immunoblotting of wild-type muscle lysates revealed that, not only were Id1 and Id3 highly upregulated within 24 h after injury, but other upstream components of the BMP pathway were as well, including the BMP receptor type II and phosphorylated Smad1/5/8 (pSmad1/5/8). Inhibition of BMP signaling in injured skeletal muscle by Noggin injection reduced pSmad1/5/8, Id1, and Id3 protein levels. The mouse myoblast-derived cell line C2C12 also expressed Id1, Id3, BMP receptor type II, and pSmad1/5/8 during proliferation, but all were reduced upon differentiation into myotubes. In addition, these cells secreted mature BMP-4, and BMP signaling could be inhibited with exogenous Noggin, causing a reduction in pSmad1/5/8, Id1, and Id3 levels. Confocal immunofluorescence microscopy revealed that activated Pax7+ myoblasts coexpressed nuclear pSmad1/5/8, Id1, and Id3 in injured mouse skeletal muscle sections. Although we did not observe differences in the numbers of quiescent Pax7+ satellite cells in adult uninjured hindlimb muscles, we did observe a significant reduction in the number of proliferating Pax7+ cells in the Id-mutant mice after muscle injury compared with either wild-type or Id3-null mice. These data suggest a model in which BMP signaling regulates Id1 and Id3 in muscle satellite cells, which directs their proper proliferation before terminal myogenic differentiation after skeletal muscle injury in postnatal animals.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility