Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Y Luo
Total Records ( 4 ) for Y Luo
  M Cuendet , J Guo , Y Luo , S Chen , C. P Oteham , R. C Moon , R. B van Breemen , L. E Marler and J. M. Pezzuto
 

Isoliquiritigenin (2',4',4-trihydroxychalcone; ILG), a chalcone found in licorice root and many other plants, has shown potential chemopreventive activity through induction of phase II enzymes such as quinone reductase-1 in murine hepatoma cells. In this study, the in vivo metabolism of ILG was investigated in rats. In addition, ILG glucuronides and ILG-glutathione adducts were observed in human hepatocytes and in livers from rats treated with ILG. ILG glucuronides were detected in both plasma and rat liver tissues. In addition, in a full-term cancer chemoprevention study conducted with 7,12-dimethylbenz(a)anthracene–treated female Sprague-Dawley rats, dietary administration of ILG slightly increased tumor latency but had a negative effect on the incidence of mammary tumors starting at ~65 days after 7,12-dimethylbenz(a)anthracene administration. Further, no significant induction of phase II enzymes was found in mammary glands, which is consistent with the low level of ILG observed in these tissues. However, ILG significantly induced quinone reductase-1 activity in the colon, and glutathione as well as glutathione S-transferase in the liver. Analysis of mRNA expression in tissues of rats treated with ILG supported these findings. These results suggest that ILG should be tested for chemopreventive efficacy in nonmammary models of cancer. Cancer Prev Res; 3(2); 221–32

  W Chen , Y Luo , L Liu , H Zhou , B Xu , X Han , T Shen , Z Liu , Y Lu and S. Huang
 

Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, little is known about its anticancer mechanism. Here, we show that CPT inhibited cancer cell proliferation by arresting cells in G1-G0 phase of the cell cycle. This is associated with the inhibition of cyclin D1 expression and retinoblastoma (Rb) protein phosphorylation. Furthermore, we found that CPT inhibited the signaling pathway of the mammalian target of rapamycin (mTOR), a central regulator of cell proliferation. This is evidenced by the findings that CPT inhibited type I insulin-like growth factor I– or 10% fetal bovine serum–stimulated phosphorylation of mTOR, p70 S6 kinase 1, and eukaryotic initiation factor 4E binding protein 1 in a concentration- and time-dependent manner. Expression of constitutively active mTOR conferred resistance to CPT inhibition of cyclin D1 expression and Rb phosphorylation, as well as cell growth. The results suggest that CPT is a novel antiproliferative agent. Cancer Prev Res; 3(8); 1015–25. ©2010 AACR.

  J Zhang , J. Y. F Chang , Y Huang , X Lin , Y Luo , R. J Schwartz , J. F Martin and F. Wang
  Rationale:

Heart valves develop from precursor structures called cardiac cushions, an endothelial-lined cardiac jelly that resides in the inner side of the heart tube. The cushions are then invaded by cells from different sources, undergo a series of complicated and poorly understood remodeling processes, and give rise to valves. Disruption of the fibroblast growth factor (FGF) signaling axis impairs morphogenesis of the outflow tract (OFT). Yet, whether FGF signaling regulates OFT valve formation is unknown.

Objective:

To study how OFT valve formation is regulated and how aberrant cell signaling causes valve defects.

Methods and Results:

By using mouse genetic manipulation, cell lineage tracing, ex vivo heart culture, and molecular biology approaches, we demonstrated that FGF signaling in the OFT myocardium upregulated Bmp4 expression, which then enhanced smooth muscle differentiation of neural crest cells (NCCs) in the cushion. FGF signaling also promoted OFT myocardial cell invasion to the cushion. Disrupting FGF signaling interrupted cushion remodeling with reduced NCCs differentiation into smooth muscle and less cardiomyocyte invasion and resulted in malformed OFT valves.

Conclusions:

The results demonstrate a novel mechanism by which the FGF-BMP signaling axis regulates formation of OFT valve primordia by controlling smooth muscle differentiation of cushion NCCs.

  K. E Szulwach , X Li , R. D Smrt , Y Li , Y Luo , L Lin , N. J Santistevan , W Li , X Zhao and P. Jin
 

The microRNA miR-137 represses expression of Ezh2, a histone methyltransferase, which in turn alters the epigenetic architecture of chromatin that is important for regulation of miR-137 levels.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility