Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Y Ji
Total Records ( 4 ) for Y Ji
  C Bian , F Zhang , F Wang , Z Ling , M Luo , H Wu , Y Sun , J Li , B Li , J Zhu , L Tang , Y Zhou , Q Shi , Y Ji , L Tian , G Lin , Y Fan , N Wang and B. Sun
 

DNA immunization is an efficient method for high-affinity monoclonal antibody generation. Here, we describe the generation of several high-quality monoclonal antibodies (mAbs) against retinol-binding protein 4 (RBP4), an important marker for kidney abnormality and dysfunction, with a combination method of DNA priming and protein boost. The mAbs generated could bind to RBP4 with high sensitivity and using these mAbs, an immunocolloidal gold fast test strip was constructed. The strip can give a result in <5 min and is very sensitive with a detection limit of about 1 ng/ml. A small-scale clinical test revealed that the result of this strip was well in accordance with that of an enzyme-labeled immunosorbent assay kit currently available on the market. Consequently, it could be useful for more convenient and faster RBP4 determination in the clinic.

  F Yang , J Wang , Y Ji , H Cheng , J Wan , Z Xiao and G. Zhou
 

Small RNAs, generally expressed at low levels, are difficult to reach usable levels from limited material. In this study, we have developed a novel method to amplify target RNA. The amplification procedure was carried out by sequential RT-PCR, effective separation, restriction enzymatic cleavage of cDNA strand, and run-off transcription in vitro of target RNA from its cDNA. Introduction of a unique stem-loop linker into cDNA strand is the key step to form a unique restriction enzyme recognition sequence that is not in cDNA sequence of target RNA. This method can be used to amplify RNA samples from various origins and has many advantages in amplifying unknown small RNAs and small RNA mixtures. The amplified RNA has the full sequence of original RNA except for an extra 5' G and an additional 3' A or C. The method worked well for amplifications of a microRNA, a piwi interacting RNA and two small RNA mixtures.

  S Paul , A. M Rimando , H. J Lee , Y Ji , B. S Reddy and N. Suh
 

Oxidative/nitrosative stress and generation of proinflammatory cytokines are hallmarks of inflammation. Because chronic inflammation is implicated in several pathologic conditions in humans, including cancers of the colon, anti-inflammatory compounds may be useful chemopreventive agents against colon cancer. Stilbenes, such as resveratrol, have diverse pharmacologic activities, which include anti-inflammation, cancer prevention, a cholesterol-lowering effect, enhanced insulin sensitivity, and increased life span. We previously showed that pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene), a structural analogue of resveratrol, is present in blueberries and that pterostilbene inhibited expression of certain inflammation-related genes in the colon and suppressed aberrant crypt foci formation in rats. Here, we examined molecular mechanisms of the action of pterostilbene in colon cancer. Pterostilbene reduced cell proliferation, down-regulated the expression of c-Myc and cyclin D1, and increased the level of cleaved poly(ADP-ribose) polymerase. A combination of cytokines (tumor necrosis factor-, IFN-, and bacterial endotoxin lipopolysaccharide) induced inflammation-related genes such as inducible nitric oxide synthase and cyclooxygenase-2, which was significantly suppressed by treatment with pterostilbene. We further identified upstream signaling pathways contributing to the anti-inflammatory activity of pterostilbene by investigating multiple signaling pathways, including nuclear factor-B, Janus-activated kinase-signal transducer and activator of transcription, extracellular signal-regulated kinase, p38, c-Jun NH2-terminal kinase, and phosphatidylinositol 3-kinase. Cytokine induction of the p38-activating transcription factor 2 pathway was markedly inhibited by pterostilbene among the different mediators of signaling evaluated. By silencing the expression of the p38 isoform, there was significant reduction in cytokine induction of inducible nitric oxide synthase and cyclooxygenase-2. Our data suggest that the p38 mitogen-activated protein kinase cascade is a key signal transduction pathway for eliciting the anti-inflammatory action of pterostilbene in cultured HT-29 colon cancer cells.

  P O'Kane , L Xie , Z Liu , L Queen , G Jackson , Y Ji and A. Ferro
  Aims

Acute administration of aspirin increases nitric oxide (NO) synthesis by platelets, an effect not shared by other non-steroidal anti-inflammatory drugs. The aim of the present study was to determine the mechanism by which aspirin acutely increases the activity of NO synthase type 3 (NOS-3), the predominant NOS isoform expressed by platelets, and specifically whether this occurs through an increase in its acetylation.

Methods and results

Platelets isolated from the blood of healthy human subjects were exposed in vitro to vehicle or aspirin at different concentrations (5 µmol/L–4 mmol/L). Changes in intraplatelet Ca2+ concentration were determined from fura-2 fluorescence. Following immunoprecipitation of NOS-3 from platelet lysates, its activity was determined from l-[3H]arginine to l-[3H]citrulline conversion, and its serine phosphorylation quantified by western blotting. Acetylation of NOS-3 in platelets was assessed by the incorporation of radioactivity into the immunoprecipitated enzyme from [acetyl-14C]aspirin. Following transfection of HeLa cells with NOS-3, NO biosynthesis in response to aspirin was determined from cyclic GMP measurement, and sites of NOS-3 acetylation were ascertained by liquid chromatography–tandem mass spectrometry. At all concentrations tested, aspirin increased the activity of NOS-3 from platelets. This was not associated with any measurable change in intraplatelet Ca2+ concentration. Serine phosphorylation of NOS-3 in platelets was decreased, and this was especially marked for serine-1177 phosphorylation, whereas acetylation of NOS-3 was increased, by aspirin incubation. HeLa cells transfected with NOS-3 exhibited an increase in NO biosynthesis following aspirin exposure, and this was associated with acetylation of the enzyme on both serine-765 and serine-771.

Conclusion

Aspirin acetylates NOS-3 acutely in platelets, and this causes an increase in its activity as well as a decrease in its phosphorylation. It is also possible that aspirin indirectly affects NOS-3 activity by acetylating other substrates within the platelet, but this remains to be determined.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility