Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Y Ge
Total Records ( 4 ) for Y Ge
  S Ju , Y Ge , H Qiu , B Lu , Y Qiu , J Fu , G Liu , Q Wang , Y Hu , Y Shu and X. Zhang

Dendritic cells (DCs) are responsible for the initiation of immune responses. Our study demonstrates a new pathway for generating a large quantity of stimulatory monocyte-derived DCs (Mo-DCs) from human monocytes using anti-4-1BB ligand (4-1BBL) mAb to trigger reverse signaling. The anti-4-1BBL-driven Mo-DCs (DCs-4-1BBL) not only express higher levels of CD86, CD83 and HLA-DR, when compared with the Mo-DCs matured by tumor necrosis factor , but also exhibit a unique phenotype that expresses lower levels of PD-L1. High levels of GM-CSF, M-CSF and Flt3 ligand (FL) were found in the anti-4-1BBL-differentiation culture. Neutralizing M-CSF, GM-CSF and FL inhibited Mo-DC proliferation stimulated by anti-4-1BBL mAb, suggesting that M-CSF, GM-CSF and FL are involved in cell proliferation stimulated by anti-4-1BBL. Further analysis of the DCs-4-1BBL showed increased secretion of Th1-type cytokines IL-12 and IFN- and decreased secretion of IL-10. DCs-4-1BBL induced much stronger proliferative responses in the mixed lymphocyte reaction assay when compared with DCs derived by GM-CSF. Moreover, DCs-4-1BBL preferentially induced Th1 responses. We have further demonstrated that anti-4-1BBL antibody stimulated nuclear translocation of NF-B from the cytoplasm in monocytes, suggesting that reverse signaling by 4-1BBL is likely responsible for mediating DC differentiation. Collectively, we have found that reverse signaling of 4-1BBL promotes the differentiation of potent Th1-inducing DCs from human monocytes.

  L Liu , J Hou , J Du , R. S Chumanov , Q Xu , Y Ge , J. A Johnson and R. M. Murphy

Tg2576 mice produce high levels of beta-amyloid (Aβ) and develop amyloid deposits, but lack neurofibrillary tangles and do not suffer the extensive neuronal cell loss characteristic of Alzheimer's disease. Protection from Aβ toxicity has been attributed to up-regulation of transthyretin (TTR), a normal component of plasma and cerebrospinal fluid. We compared the effect of TTR purified from human plasma (pTTR) with that produced recombinantly (rTTR) on Aβ aggregation and toxicity. pTTR slowed Aβ aggregation but failed to protect primary cortical neurons from Aβ toxicity. In contrast, rTTR accelerated aggregation, while effectively protecting neurons. This inverse correlation between Aβ aggregation kinetics and toxicity is consistent with the hypothesis that soluble intermediates rather than insoluble fibrils are the most toxic Aβ species. We carried out a detailed comparison of pTTR with rTTR to ascertain the probable cause of these different effects. No differences in secondary, tertiary or quaternary structure were detected. However, pTTR differed from rTTR in the extent and nature of modification at Cys10. We hypothesize that differential modification at Cys10 regulates TTR's effect on Aβ aggregation and toxicity.

  Y Ge , A. L Wu , C Warnes , J Liu , C Zhang , H Kawasome , N Terada , M. D Boppart , C. J Schoenherr and J. Chen

Rapamycin-sensitive signaling is required for skeletal muscle differentiation and remodeling. In cultured myoblasts, the mammalian target of rapamycin (mTOR) has been reported to regulate differentiation at different stages through distinct mechanisms, including one that is independent of mTOR kinase activity. However, the kinase-independent function of mTOR remains controversial, and no in vivo studies have examined those mTOR myogenic mechanisms previously identified in vitro. In this study, we find that rapamycin impairs injury-induced muscle regeneration. To validate the role of mTOR with genetic evidence and to probe the mechanism of mTOR function, we have generated and characterized transgenic mice expressing two mutants of mTOR under the control of human skeletal actin (HSA) promoter: rapamycin-resistant (RR) and RR/kinase-inactive (RR/KI). Our results show that muscle regeneration in rapamycin-administered mice is restored by RR-mTOR expression. In the RR/KI-mTOR mice, nascent myofiber formation during the early phase of regeneration proceeds in the presence of rapamycin, but growth of the regenerating myofibers is blocked by rapamycin. Igf2 mRNA levels increase drastically during early regeneration, which is sensitive to rapamycin in wild-type muscles but partially resistant to rapamycin in both RR- and RR/KI-mTOR muscles, consistent with mTOR regulation of Igf2 expression in a kinase-independent manner. Furthermore, systemic ablation of S6K1, a target of mTOR kinase, results in impaired muscle growth but normal nascent myofiber formation during regeneration. Therefore, mTOR regulates muscle regeneration through kinase-independent and kinase-dependent mechanisms at the stages of nascent myofiber formation and myofiber growth, respectively.

  Y Wei , Y Ge , F Zhou , H Chen , C Cui , D Liu , Z Yang , G Wu , J Gu and J. Jiang

ATF5, a member of ATF/CREB family of b-ZIP transcription factors, is highly expressed in a wide variety of neoplasms and regulates cell differentiation, cell survival and apoptosis. However, the mechanism of human ATF5 transcriptional regulation has not been clarified. Here, we identified the transcription start site of the ATF5 gene, cloned its 5'-flanking region and identified the region –105 to +3 relative to the transcription start site as that having promoter activity. This region contained potential binding sites for several transcription factors, including EBF1, Sp1 and E2F1. EBF1 transcription factor binds to the ATF5 promoter and regulates the ATF5 transcription in an EBF-binding site independent manner. Thus, our studies not only provided molecular basis of ATF5 transcriptional regulation, but also identified ATF5 as a target gene of EBF1 transcription factor.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility