Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Y Erlich
Total Records ( 3 ) for Y Erlich
  O Rechavi , Y Erlich , H Amram , L Flomenblit , F. V Karginov , I Goldstein , G. J Hannon and Y. Kloog
 

In some organisms, small RNA pathways can act nonautonomously, with responses spreading from cell to cell. Dedicated intercellular RNA delivery pathways have not yet been characterized in mammals, although secretory compartments have been found to contain RNA. Here we show that, upon cell contact, T cells acquire from B cells small RNAs that can impact the expression of target genes in the recipient T cells. Synthetic microRNA (miRNA) mimetics, viral miRNAs expressed by infected B cells, and endogenous miRNAs could all be transferred into T cells. These mechanisms may allow small RNA-mediated communication between immune cells. The documented transfer of viral miRNAs raises the possible exploitation of these pathways for viral manipulation of the host immune response.

  Y Erlich , K Chang , A Gordon , R Ronen , O Navon , M Rooks and G. J. Hannon
 

Next-generation sequencers have sufficient power to analyze simultaneously DNAs from many different specimens, a practice known as multiplexing. Such schemes rely on the ability to associate each sequence read with the specimen from which it was derived. The current practice of appending molecular barcodes prior to pooling is practical for parallel analysis of up to many dozen samples. Here, we report a strategy that permits simultaneous analysis of tens of thousands of specimens. Our approach relies on the use of combinatorial pooling strategies in which pools rather than individual specimens are assigned barcodes. Thus, the identity of each specimen is encoded within the pooling pattern rather than by its association with a particular sequence tag. Decoding the pattern allows the sequence of an original specimen to be inferred with high confidence. We verified the ability of our encoding and decoding strategies to accurately report the sequence of individual samples within a large number of mixed specimens in two ways. First, we simulated data both from a clone library and from a human population in which a sequence variant associated with cystic fibrosis was present. Second, we actually pooled, sequenced, and decoded identities within two sets of 40,000 bacterial clones comprising approximately 20,000 different artificial microRNAs targeting Arabidopsis or human genes. We achieved greater than 97% accuracy in these trials. The strategies reported here can be applied to a wide variety of biological problems, including the determination of genotypic variation within large populations of individuals.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility