Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Xiaohong Wang
Total Records ( 4 ) for Xiaohong Wang
  Yan Ma , Jianjun Qiao , Wei Liu , Zhe Wan , Xiaohong Wang , Richard Calderone and Ruoyu Li
  Aspergillus fumigatus is an important opportunistic fungal pathogen. This organism must be able to adapt to stress changes in the microenvironment during host invasion and systemic spread. The high-osmolarity-glycerol (HOG) mitogen-activated protein kinase (HOG-MAPK) signaling pathway plays an important role in regulating morphology, growth, and adaptation to stress and virulence in a number of fungal pathogens. The Sho1 adaptor protein is one important element of the two upstream branches of the HOG-MAPK pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. We constructed a sho1 mutant of A. fumigatus, MA21. Both the growth and germination rates of the mutant were reduced, and the MA21 strain had an irregular hyphal morphology characterized by reduced production of phialides and conidia. This gene deletion mutant was sensitive to 2.5 mM hydrogen peroxide and 15 µM menadione, but it appeared to be minimally sensitive to diamide compared to the wild-type strain. In an immunosuppressed mouse model, the mutant was as virulent as the wild-type or complemented strains. These data support the idea that the loss of sho1, a highly conserved gene among fungi, regulates radial hyphal growth and delays germination of A. fumigatus conidia. In addition, the sho1 gene has a visible effect in the adaptation to oxidative stress in A. fumigatus similar to that in S. cerevisiae.
  Qian Zhang , Xiaohong Wang , Yiming Zhu , Yan’an Zhou , Xinping Qiu and Litian Liu

This paper reports a micro direct methanol fuel cell (μDMFC) integrated with a heater and a temperature sensor to realize temperature control. A thermal model for the μDMFC is set up based on heat transfer and emission mechanisms. Several patterns of the heater are designed and simulated to produce a more uniform temperature profile. The μDMFC with optimized temperature control system, which has better temperature distribution, is fabricated by using MEMS technologies, assembled with polydimethylsiloxane (PDMS) material and polymethylmethacrylate (PMMA) holders, and characterized in two methods, one with different currents applied and another with different methanol velocities. A μDMFC integrated with the heater of different pattern and another one with aluminum holders, are assembled and tested also to verify the heating effect and temperature maintaining of packaging material. This work would make it possible for a μDMFC to enhance the performance by adjusting to an optimal temperature and employ in extreme environments, such as severe winter, polar region, outer space, desert and deep sea area.

  Shengle Fang , Minghui Jiang and Xiaohong Wang
  In this paper, the problems of determining the global exponential stability and estimating the exponential convergence rate are investigated for a class of neural networks with mixed discrete and distributed time-varying delays. By employing a new Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is exploited to establish sufficient easy-to-test conditions for the neural networks to be globally exponentially stable, which can be readily solved by using the numerically efficient Matlab LMI toolbox. Three numerical examples are provided to demonstrate the effectiveness of the proposed results.
  Yabing Chen , Xiaohong Wang , Lie Di , Guoping Fu , Yuhong Chen , Li Bai , Jianzhong Liu , Xu Feng , Jay M. McDonald , Sue Michalek , Yinghong He , Mei Yu , Yang-Xin Fu , Renren Wen , Hui Wu and Demin Wang
  Phospholipase Cγ2 (PLCγ2) is an important signaling effector of multiple receptors in the immune system. Here we show that PLCγ2-deficient mice displayed impaired lymph node organogenesis but normal splenic structure and Peyer`s patches. Receptor activator of NF-κB ligand (RANKL) is a tumor necrosis factor family cytokine and is essential for lymph node organogenesis. Importantly, PLCγ2 deficiency severely impaired RANKL signaling, resulting in marked reduction of RANKL-induced activation of MAPKs, p38 and JNK, but not ERK. The lack of PLCγ2 markedly diminished RANKL-induced activation of NF-κB, AP-1, and NFATc1. Moreover, PLCγ2 deficiency impaired RANKL-mediated biological function, leading to failure of the PLCγ2-deficient bone marrow macrophage precursors to differentiate into osteoclasts after RANKL stimulation. Re-introduction of PLCγ2 but not PLCγ1 restores RANKL-mediated osteoclast differentiation of PLCγ2-deficient bone marrow-derived monocyte/macrophage. Taken together, PLCγ2 is essential for RANK signaling, and its deficiency leads to defective lymph node organogenesis and osteoclast differentiation.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility