Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Xi He
Total Records ( 3 ) for Xi He
  Bryan T. MacDonald , Chika Yokota , Keiko Tamai , Xin Zeng and Xi He
  Low density lipoprotein receptor-related protein 6 (LRP6) and its homologue LRP5 serve as Wnt co-receptors that are essential for the Wnt/β-catenin pathway. Wnt activation of LRP6 leads to recruitment of the scaffolding protein Axin and inhibition of Axin-mediated phosphorylation/destruction of β-catenin. We showed that five conserved PPPSP motifs in the LRP6 intracellular domain are required for LRP6 function, and mutation of these motifs together abolishes LRP6 signaling activity. We further showed that Wnt induces the phosphorylation of a prototypic PPPSP motif, which provides a docking site for Axin and is sufficient to transfer signaling activity to a heterologous receptor. However, the activity, regulation, and functionality of multiple PPPSP motifs in LRP6 have not been characterized. Here we provide a comprehensive analysis of all five PPPSP motifs in LRP6. We define the core amino acid residues of a prototypic PPPSP motif via alanine scanning mutagenesis and demonstrate that each of the five PPPSP motifs exhibits signaling and Axin binding activity in isolation. We generated two novel phosphorylation-specific antibodies to additional PPPSP motifs and show that Wnt induces phosphorylation of these motifs in the endogenous LRP6 through glycogen synthase kinase 3. Finally, we uncover the critical cooperativity of PPPSP motifs in the full-length LRP6 by demonstrating that LRP6 mutants lacking a single PPPSP motif display compromised function, whereas LRP6 mutants lacking two of the five PPPSP motifs are mostly inactive. This cooperativity appears to reflect the ability of PPPSP motifs to promote the phosphorylation of one another and to interact with Axin synergistically. These results establish the critical role and a common phosphorylation/activation mechanism for the PPPSP motifs in LRP6 and suggest that the conserved multiplicity and cooperativity of the PPPSP motifs represents a built-in amplifier for Wnt signaling by the LRP6 family of receptors.
  Mikhail V. Semenov , Xinjun Zhang and Xi He
  DKK1 is a secreted protein that antagonizes Wnt signaling and plays essential roles in vertebrate embryogenesis including head induction, skeletal development, and limb patterning. DKK1 is also implicated in osteoporosis, arthritis, and cancer and represents a potential therapeutic target for the treatment of these diseases. DKK1 is a high affinity antagonistic ligand for LRP6, which is a Wnt coreceptor that acts together with the Frizzled serpentine receptor to initiate Wnt signal transduction. Two different models have been proposed to account for the mechanism by which DKK1 antagonizes LRP6 function. One model suggests that DKK1 binding to LRP6 disrupts Wnt-induced Frizzled-LRP6 complex formation, whereas the other model proposes that DKK1 interaction with LRP6 promotes LRP6 internalization and degradation, thereby reducing the cell surface LRP6 level. To clarify the molecular basis of DKK1 action, we examined how DKK1 affects the endogenous LRP6 in several mammalian cell lines including mouse embryonic fibroblasts. Here we show that DKK1 inhibits Wnt signaling but induces neither LRP6 down-regulation from the cell surface nor reduction of total LRP6 protein level and that DKK1 has no effect on the rate of continuous internalization of LRP6 and the half-life (about 4.7 h) of LRP6. We conclude that DKK1 inhibition of LRP6 is independent of LRP6 internalization and degradation.
  Zhenghong Lin , Chan Gao , Yuanheng Ning , Xi He , Wei Wu and Ye-Guang Chen
  The canonical Wnt/β-catenin pathway plays a pivotal role in regulating embryogenesis and tumorigenesis by promoting cell proliferation. BAMBI (BMP and activin membrane-bound inhibitor) has previously been shown to negatively regulate the signaling activity of transforming growth factor-β, activin, and BMP and was identified as a target of β-catenin in colorectal and hepatocellular tumor cells. In this study, we provide evidence that BAMBI can promote the transcriptional activity of Wnt/β-catenin signaling. Overexpression of BAMBI enhances the expression of Wnt-responsive reporters, whereas knockdown of endogenous BAMBI attenuates them. Accordingly, BAMBI also promotes the nuclear translocation of β-catenin. BAMBI interacts with Wnt receptor Frizzled5, coreceptor LRP6, and Dishevelled2 and increases the interaction between Frizzled5 and Dishevelled2. Finally we show that BAMBI promotes the expression of c-myc and cyclin D1 and increases Wnt-promoted cell cycle progression. Altogether, our data indicate that BAMBI can function as a positive regulator of the Wnt/β-catenin pathway to promote cell proliferation.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility