Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by X. H. T. Wehrens
Total Records ( 2 ) for X. H. T. Wehrens
  M. D McCauley and X. H. T. Wehrens
  Mark D. McCauley and Xander H. T. Wehrens

Arrhythmogenic cardiomyopathies are a heterogeneous group of pathological conditions that give rise to myocardial dysfunction with an increased risk for atrial or ventricular arrhythmias. Inherited defects in cardiomyocyte proteins in the sarcomeric contractile apparatus, the cytoskeleton and desmosomal cell-cell contact junctions are becoming recognized increasingly as major causes of sudden cardiac death in the general population. Animal models have been developed for the systematic dissection of the genetic pathways involved in the pathogenesis of arrhythmogenic cardiomyopathies. This review presents an overview of current animal models for arrhythmogenic right ventricular cardiomyopathy (ARVC), hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) associated with cardiac arrhythmias and sudden cardiac death.

  A Garbino , R. J van Oort , S. S Dixit , A. P Landstrom , M. J Ackerman and X. H. T. Wehrens
 

Junctophilins (JPHs) are members of a junctional membrane complex protein family important for the physical approximation of plasmalemmal and sarcoplasmic/endoplasmic reticulum membranes. As such, JPHs facilitate signal transduction in excitable cells between plasmalemmal voltage-gated calcium channels and intracellular calcium release channels. To determine the molecular evolution of the JPH gene family, we performed a phylogenetic analysis of over 60 JPH genes from over 40 species and compared conservation across species and different isoforms. We found that JPHs are evolutionary highly conserved, in particular the membrane occupation and recognition nexus motifs found in all species. Our data suggest that an ancestral form of JPH arose at the latest in a common metazoan ancestor and that in vertebrates four isoforms arose, probably following two rounds of whole genome duplications. By combining multiple prediction techniques with sequence alignments, we also postulate the presence of new important functional regions and candidate sites for posttranslational modifications. The increasing number of available sequences yields significant insight into the molecular evolution of JPHs. Our analysis is consistent with the emerging concept that JPHs serve dual important functions in excitable cells: structural assembly of junctional membrane complexes and regulation of intracellular calcium signaling pathways.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility