Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by X Xu
Total Records ( 18 ) for X Xu
  T Zhang , X Xu , L Shen , Y Feng , Z Yang , Y Shen , J Wang , W Jin and X. Wang
 

Overexpression of foreign proteins in Escherichia coli often leads to the formation of inclusion bodies (IBs), which becomes the major bottleneck in the preparation of recombinant proteins and their applications. In the present study, 36 proteins from IBs were refolded using a simple refolding method. Refolding yields of these proteins were defined as the percentage of soluble proteins following dilution refolding in the amount of denatured proteins in the samples before diluting into refolding buffer. Furthermore, a mathematical model was deduced to evaluate the role of biochemical properties in the protein refolding. Our results indicated that under the experimental conditions, isoelectric point of proteins might be mostly contributing to the high efficacy of protein refolding since the increment of one unit resulted in a decrease of 14.83% in the refolding yield. Other important mediators were components of protein secondary structure and the molecular weight (R2 = 0.98, P = 0.000, F-test). Six proteins with low efficiency in the protein refolding possessed relatively low isoelectric points. Furthermore, refolding yields of six additional proteins from IBs were predicted and further validated by refolding the proteins under the same conditions. Therefore, the model of protein refolding developed here could be used to predict the refolding yields of proteins from IBs through a simple method. Our study will be suggestive to optimize the methods for protein refolding from IBs according to their intrinsic properties.

  E Egecioglu , K Ploj , X Xu , M Bjursell , N Salome , N Andersson , C Ohlsson , M Taube , C Hansson , M Bohlooly Y , D. G. A Morgan and S. L. Dickson
 

To investigate the role of the central neuromedin U (NMU) signaling system in body weight and energy balance regulation, we examined the effects of long-term intracerebroventricular (icv) infusion of NMU in C57Bl/6 mice and in mice lacking the gene encoding NMU receptor 2. In diet-induced obese male and female C57BL/6 mice, icv infusion of NMU (8 µg·day–1·mouse–1) for 7 days decreased body weight and total energy intake compared with vehicle treatment. However, these parameters were unaffected by NMU treatment in lean male and female C57BL/6 mice fed a standard diet. In addition, female (but not male) NMUR2-null mice had increased body weight and body fat mass when fed a high-fat diet but lacked a clear body weight phenotype when fed a standard diet compared with wild-type littermates. Furthermore, female (but not male) NMUR2-null mice fed a high-fat diet were protected from central NMU-induced body weight loss compared with littermate wild-type mice. Thus, we provide the first evidence that long-term central NMU treatment reduces body weight, food intake, and adiposity and that central NMUR2 signaling is required for these effects in female but not male mice.

  N. P Hessvik , M. V Boekschoten , M. A Baltzersen , S Kersten , X Xu , H Andersen , A. C Rustan and G. H. Thoresen
 

Liver X receptors (LXRs) are important regulators of cholesterol, lipid, and glucose metabolism and have been extensively studied in liver, macrophages, and adipose tissue. However, their role in skeletal muscle is poorly studied and the functional role of each of the LXR and LXRβ subtypes in skeletal muscle is at present unknown. To study the importance of each of the receptor subtypes, myotube cultures derived from wild-type (WT) and LXR and LXRβ knockout (KO) mice were established. The present study showed that treatment with the LXR agonist T0901317 increased lipogenesis and apoA1-dependent cholesterol efflux in LXR KO and WT myotubes but not in LXRβ KO cells. The functional studies were confirmed by T0901317-induced increase in mRNA levels of LXR target genes involved in lipid and cholesterol metabolism in myotubes established from WT and LXR KO mice, whereas only minor changes were observed for these genes in myotubes from LXRβ KO mice. Gene expression analysis using microarrays showed that very few genes other than the classical, well-known LXR target genes were regulated by LXR in skeletal muscle. The present study also showed that basal glucose uptake was increased in LXRβ KO myotubes compared with WT myotubes, suggesting a role for LXRβ in glucose metabolism in skeletal muscle. In conclusion, LXRβ seems to be the main LXR subtype regulating lipogenesis and cholesterol efflux in skeletal muscle.

  J Yang , Y Park , H Zhang , X Xu , G. A Laine , K. C Dellsperger and C. Zhang
 

We hypothesized that the interaction between tumor necrosis factor- (TNF-)/nuclear factor-B (NF-B) via the activation of IKK-β may amplify one another, resulting in the evolution of vascular disease and insulin resistance associated with diabetes. To test this hypothesis, endothelium-dependent (ACh) and -independent (sodium nitroprusside) vasodilation of isolated, pressurized coronary arterioles from mLeprdb (heterozygote, normal), Leprdb (homozygote, diabetic), and Leprdb mice null for TNF- (dbTNF–/dbTNF–) were examined. Although the dilation of vessels to sodium nitroprusside was not different between Leprdb and mLeprdb mice, the dilation to ACh was reduced in Leprdb mice. The NF-B antagonist MG-132 or the IKK-β inhibitor sodium salicylate (NaSal) partially restored nitric oxide-mediated endothelium-dependent coronary arteriolar dilation in Leprdb mice, but the responses in mLeprdb mice were unaffected. The protein expression of IKK- and IKK-β were higher in Leprdb than in mLeprdb mice; the expression of IKK-β, but not the expression of IKK-, was attenuated by MG-132, the antioxidant apocynin, or the genetic deletion of TNF- in diabetic mice. Leprdb mice showed an increased insulin resistance, but NaSal improved insulin sensitivity. The protein expression of TNF- and NF-B and the protein modification of phosphorylated (p)-IKK-β and p-JNK were greater in Leprdb mice, but NaSal attenuated TNF-, NF-B, p-IKK-β, and p-JNK in Leprdb mice. The ratio of p-insulin receptor substrate (IRS)-1 at Ser307 to IRS-1 was elevated in Leprdb compared with mLeprdb mice; both NaSal and the JNK inhibitor SP-600125 reduced the p-IRS-1-to-IRS-1 ratio in Leprdb mice. MG-132 or the neutralization of TNF- reduced superoxide production in Leprdb mice. In conclusion, our results indicate that the interaction between NF-B and TNF- signaling induces the activation of IKK-β and amplifies oxidative stress, leading to endothelial dysfunction in type 2 diabetes.

  X Xu , V. A Kanda , E Choi , G Panaghie , T. K Roepke , S. A Gaeta , D. J Christini , D. J Lerner and G. W. Abbott
  Aims

KCNQ1–MinK potassium channel complexes (4:2β stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control.

Methods and results

Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1–MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1–MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse.

Conclusion

The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition—and thus current density and gating kinetics—that may also apply to other –β type Kv channel complexes.

  L Ding , L Dong , X Chen , L Zhang , X Xu , A Ferro and B. Xu
 

Background— Left ventricular (LV) remodeling is associated with the development of heart failure after myocardial infarction. Here we investigated whether integrin-linked kinase (ILK) may regulate LV remodeling and function after myocardial infarction.

Methods and Results— Adenoviral vector expressing ILK (n=25) or empty adeno-null (n=25) was injected into rat peri-infarct myocardium after left anterior descending coronary artery ligation. ILK expression was confirmed by Western blotting and immunofluorescence. Echocardiographic and hemodynamic analyses demonstrated relatively preserved cardiac function in adeno-ILK animals. ILK treatment was associated with reduced infarct scar size, increased scar thinning ratio, and preserved LV diameter, wall thickness, cardiomyocyte size, and myofilament density. Enhanced angiogenesis and reduced fibrosis were observed in the adeno-ILK group, along with reduced apoptosis as demonstrated by terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling analysis. Moreover, increased cardiomyocyte proliferation was found in adeno-ILK animals, as measured by proliferating cell nuclear antigen, Ki-67, and phosphohistone-H3 staining. At long-term follow-up, most indices of cardiac function and hemodynamics showed no difference between adeno-ILK and control animals by 9 weeks, although LV end-systolic diameter and infarct scar size were reduced in the adeno-ILK group at this time point. Additionally, ILK overexpression was found to exert a rescue effect on remodeling when administered in a delayed fashion 1 week after coronary artery ligation.

Conclusions— ILK gene therapy improves cardiac remodeling and function in rats after myocardial infarction and is associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation. This may represent a new approach to the treatment of postinfarct remodeling and subsequent heart failure.

  X Hu , X Xu , G Zhu , D Atzler , M Kimoto , J Chen , E Schwedhelm , N Luneburg , R. H Boger , P Zhang and Y. Chen
 

Background— Asymmetrical methylarginines inhibit NO synthase activity and thereby decrease NO production. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) degrades asymmetrical methylarginines. We previously demonstrated that in the heart DDAH1 is predominantly expressed in vascular endothelial cells. Because an earlier study showed that mice with global DDAH1 deficiency experienced embryonic lethality, we speculated that a mouse strain with selective vascular endothelial DDAH1 deficiency (endo-DDAH1–/–) would largely abolish tissue DDAH1 expression in many tissues but possibly avoid embryonic lethality.

Methods and Results— By using the LoxP/Cre approach, we generated the endo-DDAH1–/– mice. The endo-DDAH1–/– mice had no apparent defect in growth or development compared with wild-type littermates. DDAH1 expression was greatly reduced in kidney, lung, brain, and liver, indicating that in these organs DDAH1 is distributed mainly in vascular endothelial cells. The endo-DDAH1–/– mice showed a significant increase of asymmetric dimethylarginine concentration in plasma (1.41 µmol/L in the endo-DDAH1–/– versus 0.69 µmol/L in the control mice), kidney, lung, and liver, which was associated with significantly increased systolic blood pressure (132 mm Hg versus 113 mm Hg in wild-type). The endo-DDAH1–/– mice also exhibited significantly attenuated acetylcholine-induced NO production and vessel relaxation in isolated aortic rings.

Conclusions— Our study demonstrates that DDAH1 is highly expressed in vascular endothelium and that endothelial DDAH1 plays an important role in regulating blood pressure. In the context that asymmetric methylarginines are broadly produced by many type of cells, the strong DDAH1 expression in vascular endothelium demonstrates for the first time that vascular endothelium can be an important site to actively dispose of toxic biochemical molecules produced by other types of cells.

  C. L Miller , M Oikawa , Y Cai , A. P Wojtovich , D. J Nagel , X Xu , H Xu , V Florio , S. D Rybalkin , J. A Beavo , Y. F Chen , J. D Li , B. C Blaxall , J. i Abe and C. Yan
 

Rationale: Cyclic nucleotide phosphodiesterases (PDEs) through the degradation of cGMP play critical roles in maintaining cardiomyocyte homeostasis. Ca2+/calmodulin (CaM)-activated cGMP-hydrolyzing PDE1 family may play a pivotal role in balancing intracellular Ca2+/CaM and cGMP signaling; however, its function in cardiomyocytes is unknown.

Objective: Herein, we investigate the role of Ca2+/CaM-stimulated PDE1 in regulating pathological cardiomyocyte hypertrophy in neonatal and adult rat ventricular myocytes and in the heart in vivo.

Methods and Results: Inhibition of PDE1 activity using a PDE1-selective inhibitor, IC86340, or downregulation of PDE1A using siRNA prevented phenylephrine induced pathological myocyte hypertrophy and hypertrophic marker expression in neonatal and adult rat ventricular myocytes. Importantly, administration of the PDE1 inhibitor IC86340 attenuated cardiac hypertrophy induced by chronic isoproterenol infusion in vivo. Both PDE1A and PDE1C mRNA and protein were detected in human hearts; however, PDE1A expression was conserved in rodent hearts. Moreover, PDE1A expression was significantly upregulated in vivo in the heart and myocytes from various pathological hypertrophy animal models and in vitro in isolated neonatal and adult rat ventricular myocytes treated with neurohumoral stimuli such as angiotensin II (Ang II) and isoproterenol. Furthermore, PDE1A plays a critical role in phenylephrine-induced reduction of intracellular cGMP- and cGMP-dependent protein kinase (PKG) activity and thereby cardiomyocyte hypertrophy in vitro.

Conclusions: These results elucidate a novel role for Ca2+/CaM-stimulated PDE1, particularly PDE1A, in regulating pathological cardiomyocyte hypertrophy via a cGMP/PKG-dependent mechanism, thereby demonstrating Ca2+ and cGMP signaling cross-talk during cardiac hypertrophy.

  A. V Finn , M John , G Nakazawa , R Polavarapu , V Karmali , X Xu , Q Cheng , T Davis , C Raghunathan , E Acampado , T Ezell , S Lajoie , M Eppihimer , F. D Kolodgie , R Virmani and H. K. Gold
 

Rationale: Sirolimus-eluting coronary stents (SESs) and paclitaxel-eluting coronary stents (PESs) are used to reduce restenosis but have different sites of action. The molecular targets of sirolimus overlap with those of the peroxisome proliferator-activated receptor (PPAR) agonist rosiglitazone (RSG) but the consequence of this interaction on endothelialization is unknown.

Objective: Using the New Zealand white rabbit iliac model of stenting, we examined the effects of RSG on SESs, PESs, and bare metal stents endothelialization.

Methods and Results: Animals receiving SESs, PESs, or bare metal stents and either RSG (3 mg/kg per day) or placebo were euthanized at 28 days, and arteries were evaluated by scanning electron microscopy. Fourteen-day organ culture and Western blotting of iliac arteries and tissue culture experiments were conducted. Endothelialization was significantly reduced by RSG in SESs but not in PESs or bare metal stents. Organ culture revealed reduced vascular endothelial growth factor in SESs receiving RSG compared to RSG animals receiving bare metal stent or PESs. Quantitative polymerase chain reaction in human aortic endothelial cells (HAECs) revealed that sirolimus (but not paclitaxel) inhibited RSG-induced vascular endothelial growth factor transcription. Western blotting demonstrated that inhibition of molecular signaling in SES+RSG–treated arteries was similar to findings in HAECs treated with RSG and small interfering RNA to PPAR, suggesting that sirolimus inhibits PPAR. Transfection of HAECs with mTOR (mammalian target of rapamycin) short hairpin RNA and with Akt2 small interfering RNA significantly inhibited RSG-mediated transcriptional upregulation of heme oxygenase-1, a PPAR target gene. Chromatin immunoprecipitation assay demonstrated sirolimus interferes with binding of PPAR to its response elements in heme oxygenase-1 promoter.

Conclusions: mTOR/Akt2 is required for optimal PPAR activation. Patients who receive SESs during concomitant RSG treatment may be at risk for delayed stent healing.

  N Suematsu , C Ojaimi , F. A Recchia , Z Wang , Y Skayian , X Xu , S Zhang , P. M Kaminski , D Sun , M. S Wolin , G Kaley and T. H. Hintze
 

Rationale: Patients on a low salt (LS) diet have increased mortality.

Objective: To determine whether reduction in NO bioactivity may contribute to the LS-induced cardiac dysfunction and mortality.

Methods and Results: Adult male mongrel dogs were placed on LS (0.05% sodium chloride) for 2 weeks. Body weight (25.4±0.4 to 23.6±0.4 kg), left ventricular systolic pressure (137.0±3.4 to 124.0±6.7 mm Hg), and mean aortic pressure (111±3.1 to 98±4.3 mm Hg) decreased. Plasma angiotensin II concentration increased (4.4±0.7 to 14.8±3.7 pg/mL). Veratrine-induced (5 µg/kg) NO-mediated vasodilation was inhibited by 44% in LS; however, the simultaneous intravenous infusion of ascorbic acid or apocynin acutely and completely reversed this inhibition. In LS heart tissues, lucigenin chemiluminescence was increased 2.3-fold to angiotensin II (10–8 mol/L), and bradykinin (10–4 mol/L) induced reduction of myocardial oxygen consumption in vitro was decreased (40±1.3% to 16±6.3%) and completely restored by coincubation with tiron, tempol or apocynin. Switching of substrate uptake from free fatty acid to glucose by the heart was observed (free fatty acid: 8.97±1.39 to 4.53±1.12 µmol/min; glucose: 1.31±0.52 to 6.86±1.78 µmol/min). Western blotting indicated an increase in both p47phox (121%) and gp91phox (44%) as did RNA microarray analysis (433 genes changed) showed an increase in p47phox (1.6-fold) and gp91phox (2.0 fold) in the LS heart tissue.

Conclusions: LS diet induces the activation of the renin–angiotensin system, which increases oxidative stress via the NADPH oxidase and attenuates NO bioavailability in the heart.

  X Xu , Y Horibata , M Inagaki , Y Hama , K Sakaguchi , H. M Goda and M. Ito
 

Endoglycoceramidase (EGCase; EC 3.2.1.123) is a glycohydrolase that hydrolyzes the glycosidic linkage between the oligosaccharide and ceramide of various glycosphingolipids. We previously reported that hydra produced EGCase to digest glycosphingolipids of brine shrimp (Artemia salina), a type of aquatic crustacean used as a diet for the culture of hydra (Horibata Y, Sakaguchi K, Okino N, Iida H, Inagaki M, Fujisawa T, Hama Y, Ito M. 2004. J Biol Chem. 279:33379-33389). We report here that a major glycosphingolipid of brine shrimp is unique in structure and highly sensitive to EGCase. The glycosphingolipid was extracted from freshly hatched brine shrimp by Folch's partition, followed by mild alkaline hydrolysis and purification with a Sep-Pak plus silica cartridge. The structure of brine shrimp glycosphingolipid was determined by gas chromatography, gas chromatography-mass spectrometry, fast-atom bombardment mass spectrometry, and 1H-NMR spectrometry to be GlcNAc1-2Fuc1-3Manβ1-4Glcβ1-1'Cer. Two major molecular species of the glycosphingolipid were identified; the sugar and sphingoid base of each were the same but the major fatty acid was C22:0 and 2-hydroxy C22:0, respectively. This is the first report describing the glycosphingolipid that has an internal fucosyl residue substituted with 1-2 N-acetylglucosaminyl residue. This study also suggests the biological relevance of the glycosphingolipid as a dietary source of hydra which possesses EGCase as a digestion enzyme.

  M. H Tan , A. J Smith , B Pawlyk , X Xu , X Liu , J. B Bainbridge , M Basche , J McIntosh , H. V Tran , A Nathwani , T Li and R. R. Ali
 

Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are clinically heterogeneous and present as Leber Congenital Amaurosis, the severest form of early-onset retinal dystrophy and milder forms of retinal dystrophies such as juvenile retinitis pigmentosa and dominant cone-rod dystrophy. [Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I., Leowski, C., Ducroq, D., Souied, E., Dufier, J.L., Munnich, A. and Kaplan, J. (1999) Leber congenital amaurosis. Mol. Genet. Metab., 68, 200–208.] Although not yet fully elucidated, AIPL1 is likely to function as a specialized chaperone for rod phosphodiesterase (PDE). We evaluate whether AAV-mediated gene replacement therapy is able to improve photoreceptor function and survival in retinal degeneration associated with AIPL1 defects. We used two mouse models of AIPL1 deficiency simulating three different rates of photoreceptor degeneration. The Aipl1 hypomorphic (h/h) mouse has reduced Aipl1 levels and a relatively slow degeneration. Under light acceleration, the rate of degeneration in the Aipl1 h/h mouse is increased by 2–3-fold. The Aipl1–/– mouse has no functional Aipl1 and has a very rapid retinal degeneration. To treat the different rates of degeneration, two pseudotypes of recombinant adeno-associated virus (AAV) exhibiting different transduction kinetics are used for gene transfer. We demonstrate restoration of cellular function and preservation of photoreceptor cells and retinal function in Aipl1 h/h mice following gene replacement therapy using an AAV2/2 vector and in the light accelerated Aipl1 h/h model and Aipl1–/– mice using an AAV2/8 vector. We have thus established the potential of gene replacement therapy in varying rates of degeneration that reflect the clinical spectrum of disease. This is the first gene replacement study to report long-term rescue of a photoreceptor-specific defect and to demonstrate effective rescue of a rapid photoreceptor degeneration.

  N. V Rao , B Argyle , X Xu , P. R Reynolds , J. M Walenga , M Prechel , G. D Prestwich , R. B MacArthur , B. B Walters , J. R Hoidal and T. P. Kennedy
 

While heparin has been used almost exclusively as a blood anticoagulant, important literature demonstrates that it also has broad anti-inflammatory activity. Herein, using low anti-coagulant 2-O,3-O-desulfated heparin (ODSH), we demonstrate that most of the anti-inflammatory pharmacology of heparin is unrelated to anticoagulant activity. ODSH has low affinity for anti-thrombin III, low anti-Xa, and anti-IIa anticoagulant activities and does not activate Hageman factor (factor XII). Unlike heparin, ODSH does not interact with heparin-platelet factor-4 antibodies present in patients with heparin-induced thrombocytopenia and even suppresses platelet activation in the presence of activating concentrations of heparin. Like heparin, ODSH inhibits complement activation, binding to the leukocyte adhesion molecule P-selectin, and the leukocyte cationic granular proteins azurocidin, human leukocyte elastase, and cathepsin G. In addition, ODSH and heparin disrupt Mac-1 (CD11b/CD18)-mediated leukocyte adhesion to the receptor for advanced glycation end products (RAGE) and inhibit ligation of RAGE by its many proinflammatory ligands, including the advanced glycation end-product carboxymethyl lysine-bovine serum albumin, the nuclear protein high mobility group box protein-1 (HMGB-1), and S100 calgranulins. In mice, ODSH is more effective than heparin in reducing selectin-mediated lung metastasis from melanoma and inhibits RAGE-mediated airway inflammation from intratracheal HMGB-1. In humans, 50% inhibitory concentrations of ODSH for these anti-inflammatory activities can be achieved in the blood without anticoagulation. These results demonstrate that the anticoagulant activity of heparin is distinct from its anti-inflammatory actions and indicate that 2-O and 3-O sulfate groups can be removed to reduce anticoagulant activity of heparin without impairing its anti-inflammatory pharmacology.

  Z Zhang , X Xu , Y Zhang , J Zhou , Z Yu and C. He
 

LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1-(123–510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation. Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension.

  M Jiang , X Xu , Y Wang , F Toyoda , X. S Liu , M Zhang , R. B Robinson and G. N. Tseng
 

Cardiac slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits. Although KCNE1 is an obligate IKs component that confers the uniquely slow gating kinetics, KCNE2 is also expressed in human heart. In vitro experiments suggest that KCNE2 can associate with the KCNQ1-KCNE1 complex to suppress the current amplitude without altering the slow gating kinetics. Our goal here is to test the role of KCNE2 in cardiac IKs channel function. Pulse-chase experiments in COS-7 cells show that there is a KCNE1 turnover in the KCNQ1-KCNE1 complex, supporting the possibility that KCNE1 in the IKs channel complex can be substituted by KCNE2 when the latter is available. Biotinylation experiments in COS-7 cells show that although KCNE1 relies on KCNQ1 coassembly for more efficient cell surface expression, KCNE2 can independently traffic to the cell surface, thus becoming available for substituting KCNE1 in the IKs channel complex. Injecting vesicles carrying KCNE1 or KCNE2 into KCNQ1-expressing oocytes leads to KCNQ1 modulation in the same manner as KCNQ1+KCNEx (where x = 1 or 2) cRNA coinjection. Thus, free KCNEx peptides delivered to the cell membrane can associate with existing KCNQ1 channels to modulate their function. Finally, adenovirus-mediated KCNE2 expression in adult guinea pig ventricular myocytes exhibited colocalization with native KCNQ1 protein and reduces the native IKs current density. We propose that in cardiac myocytes the IKs current amplitude is under dynamic control by the availability of KCNE2 subunits in the cell membrane.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility