Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by X Wu
Total Records ( 15 ) for X Wu
  X Wu , X Shao , Z. Y Guo and C. W. Chi
 

Neuropeptide Y (NPY) is a ubiquitous endocrine neuropeptide found in vertebrate and invertebrate. In our present work, two NPY-like exocrine conopeptides (designated as cono-NPYs) were first identified in the venom of cone snails. Both cono-NPYs showed sequence characteristics of invertebrate NPYs, suggesting that some exocrine venom peptides are probably evolved from the preexisting endocrine peptides during the evolution of cone snails.

  X Wu , W Zhang , X Shi , P An , W Sun and Z. Wang
 

In this study, we investigated the therapeutic effect of artemisinin (Art) on lupus nephritis mice and its mechanisms by comparing the differences between lupus nephritis (LN) mice given Art and control mice in molecular biology, immunohistochemistry, and histopathology. The results showed that Art could remarkably relieve the symptoms, decrease the level of urine protein/24 h, and alleviate pathological renal lesions. The differences among the four groups in the expression of the NF-Bp65 protein, nuclear factor-B (NF-B) activity, and the expression of transforming growth factor-β1 (TGF-β1) mRNA in renal tissue suggested that Art can lower the serum levels of tumor necrosis factor- (TNF-) and interleukin-6 (IL-6) and inhibit the expression of the NF-Bp65 protein and NF-B and TGF-β1 mRNA in the renal tissues of LN mice. These results proved that it is reliable and effective to use Art to treat LN mice, and its therapeutic mechanisms should closely be related to the fact that Art can obviously decrease the serum levels of TNF- and IL-6 and down-regulate the expression of the NF-Bp65 protein and NF-B and TGF-β1 mRNA in renal tissues.

  W Zhang , A Majumder , X Wu and M. W. Mulholland
 

Ghrelin is a 28-amino-acid hormone derived from the endoproteolytic processing of its prehormone proghrelin. Although ghrelin has been reported to regulate food intake and body weight, it is still unknown whether proghrelin exercises any biological function. Here we show that recombinant proghrelin alters food intake and energy metabolism in mice. After intraperitoneal administration of recombinant proghrelin (100 nmol/kg body wt), cumulative food intake was significantly increased at days 1, 2, and 3 (6 ± 0.3, 13 ± 0.5, and 20 ± 0.8 g vs. 5 ± 0.2, 10 ± 0.2, and 16 ± 0.3 g of the control mice receiving normal saline, respectively, n = 6, P < 0.05). Twelve-hour cumulative food intake in the light photo period in mice treated with proghrelin increased significantly relative to the control (2.1 ± 0.04 vs. 1.3 ± 0.2 g, n = 6, P < 0.05). No change in 12-h cumulative food intake in the dark photo period was observed between mice treated with proghrelin and vehicle (4.2 ± 0.6 vs. 4.3 ± 0.6 g, n = 6, P > 0.05). This is associated with a decrease in body weight (0.42 ± 0.04 g) for mice treated with proghrelin, whereas control animals gained body weight (0.31 ± 0.04 g). Mice treated with proghrelin demonstrate a significant decrease in respiratory quotient, indicating an increase in fat consumption. Recombinant proghrelin is functionally active with effects on food intake and energy metabolism.

  J Liu , X Wu , J. L Franklin , J. L Messina , H. S Hill , D. R Moellering , R. G Walton , M Martin and W. T. Garvey
 

Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biopsies of vastus lateralis were obtained. Skeletal muscle samples were also collected from rodent models including streptozotocin (STZ)-induced diabetic rats, db/db mice, and Zucker fatty rats. Finally, L6 muscle cells were used to examine regulation of TRIB3 by glucose, and stable cell lines hyperexpressing TRIB3 were generated to identify mechanisms underlying TRIB3-induced insulin resistance. We found that 1) skeletal muscle TRIB3 protein levels are significantly elevated in T2DM patients; 2) muscle TRIB3 protein content is inversely correlated with glucose disposal rates and positively correlated with fasting glucose; 3) skeletal muscle TRIB3 protein levels are increased in STZ-diabetic rats, db/db mice, and Zucker fatty rats; 4) stable TRIB3 hyperexpression in muscle cells blocks insulin-stimulated glucose transport and glucose transporter 4 (GLUT4) translocation and impairs phosphorylation of Akt, ERK, and insulin receptor substrate-1 in insulin signal transduction; and 5) TRIB3 mRNA and protein levels are increased by high glucose concentrations, as well as by glucose deprivation in muscle cells. These data identify TRIB3 induction as a novel molecular mechanism in human insulin resistance and diabetes. TRIB3 acts as a nutrient sensor and could mediate the component of insulin resistance attributable to hyperglycemia (i.e., glucose toxicity) in diabetes.

  W Gu , K. A Winters , A. S Motani , R Komorowski , Y Zhang , Q Liu , X Wu , I. C Rulifson , G Sivits , M Graham , H Yan , P Wang , S Moore , T Meng , R. A Lindberg and M. M. Veniant
 

Antagonism of the glucagon receptor (GCGR) is associated with increased circulating levels of glucagon-like peptide-1 (GLP-1). To investigate the contribution of GLP-1 to the antidiabetic actions of GCGR antagonism, we administered an anti-GCGR monoclonal antibody (mAb B) to wild-type mice and GLP-1 receptor knockout (GLP-1R KO) mice. Treatment of wild-type mice with mAb B lowered fasting blood glucose, improved glucose tolerance, and enhanced glucose-stimulated insulin secretion during an intraperitoneal glucose tolerance test (ipGTT). In contrast, treatment of GLP-1R KO mice with mAb B had little efficacy during an ipGTT. Furthermore, pretreatment with the GLP-1R antagonist exendin-(9–39) diminished the antihyperglycemic effects of mAb B in wild-type mice. To determine the mechanism whereby mAb B improves glucose tolerance, we generated a monoclonal antibody that specifically antagonizes the human GLP-1R. Using a human islet transplanted mouse model, we demonstrated that pancreatic islet GLP-1R signaling is required for the full efficacy of the GCGR antagonist. To identify the source of the elevated GLP-1 observed in GCGR mAb-treated mice, we measured active GLP-1 content in pancreas and intestine from db/db mice treated with anti-GCGR mAb for 8 wk. Elevated GLP-1 in GCGR mAb-treated mice was predominantly derived from increased pancreatic GLP-1 synthesis and processing. All together, these data show that pancreatic GLP-1 is a significant contributor to the glucose-lowering effects observed in response to GCGR antagonist treatment.

  T Lammermann , J Renkawitz , X Wu , K Hirsch , C Brakebusch and M. Sixt
 

Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular proteolysis. Instead, the protrusive flow of the actin cytoskeleton directly drives a basal mode of locomotion that is occasionally supported by actomyosin contractions at the trailing edge to propel the cell's rigid nucleus. We here delete the small GTPase Cdc42 in DCs and find that actin flow and actomyosin contraction are still initiated in response to chemotactic cues. Accordingly, the cells are able to polarize and form protrusions. However, in the absence of Cdc42 the protrusions are temporally and spatially dysregulated, which leads to impaired leading edge coordination. Although this defect still allows the cells to move on 2-dimensional surfaces, their in vivo motility is completely abrogated. We show that this difference is entirely caused by the geometric complexity of the environment, as multiple competing protrusions lead to instantaneous entanglement within 3-dimensional extracellular matrix scaffolds. This demonstrates that the decisive factor for migrating DCs is not specific interaction with the extracellular environment, but adequate coordination of cytoskeletal flow.

  I Katona , X Wu , S. M. E Feely , S Sottile , C. E Siskind , L. J Miller , M. E Shy and J. Li
 

Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by a 1.4 Mb duplication on chromosome 17p11.2, which contains the peripheral myelin protein-22 (PMP22) gene. Increased levels of PMP22 in compact myelin of peripheral nerves have been demonstrated and presumed to cause the phenotype of CMT1A. The objective of the present study was to determine whether an extra copy of the PMP22 gene in CMT1A disrupts the normally coordinated expression of PMP22 protein in peripheral nerve myelin and to evaluate PMP22 over-expression in patients with CMT1A and determine whether levels of PMP22 are molecular markers of disease severity. PMP22 expression was measured by taking skin biopsies from patients with CMT1A (n = 20) and both healthy controls (n = 7) and patients with Hereditary Neuropathy with liability to Pressure Palsies (HNPP) (n = 6), in which patients have only a single copy of PMP22. Immunological electron microscopy was performed on the skin biopsies to quantify PMP22 expression in compact myelin. Similar biopsies were analysed by real time PCR to measure PMP22 mRNA levels. Results were also correlated with impairment in CMT1A, as measured by the validated CMT Neuropathy Score. Most, but not all patients with CMT1A, had elevated PMP22 levels in myelin compared with the controls. The levels of PMP22 in CMT1A were highly variable, but not in HNPP or the controls. However, there was no correlation between neurological disabilities and the level of over-expression of PMP22 protein or mRNA in patients with CMT1A. The extra copy of PMP22 in CMT1A results in disruption of the tightly regulated expression of PMP22. Thus, variability of PMP22 levels, rather than absolute level of PMP22, may play an important role in the pathogenesis of CMT1A.

  X Wu , M. R Spitz , J. J Lee , S. M Lippman , Y Ye , H Yang , F. R Khuri , E Kim , J Gu , R Lotan and W. K. Hong
 

This study was aimed to identify novel susceptibility variants for second primary tumor (SPT) or recurrence in curatively treated early-stage head and neck squamous cell carcinoma (HNSCC) patients.

We constructed a custom chip containing a comprehensive panel of 9,645 chromosomal and mitochondrial single nucleotide polymorphisms (SNP) representing 998 cancer-related genes selected by a systematic prioritization schema. Using this chip, we genotyped 150 early-stage HNSCC patients with and 300 matched patients without SPT/recurrence from a prospectively conducted randomized trial and assessed the association of these SNPs with risk of SPT/recurrence.

Individually, six chromosomal SNPs and seven mitochondrial SNPs were significantly associated with risk of SPT/recurrence after adjustment for multiple comparisons. A strong gene-dosage effect was observed when these SNPs were combined, as evidenced by a progressively increasing SPT/recurrence risk as the number of unfavorable genotypes increased (P for trend < 1.00 x 10–20). Several polygenic analyses suggest an important role of interconnected functional network and gene-gene interaction in modulating SPT/recurrence. Furthermore, incorporation of these genetic markers into a multivariate model improved significantly the discriminatory ability over the models containing only clinical and epidemiologic variables.

This is the first large-scale systematic evaluation of germ-line genetic variants for their roles in HNSCC SPT/recurrence. The study identified several promising susceptibility loci and showed the cumulative effect of multiple risk loci in HNSCC SPT/recurrence. Furthermore, this study underscores the importance of incorporating germ-line genetic variation data with clinical and risk factor data in constructing prediction models for clinical outcomes.

  Y Liu , S Shete , L. E Wang , R El Zein , C. J Etzel , F. W Liang , G Armstrong , S Tsavachidis , M. R Gilbert , K. D Aldape , J Xing , X Wu , Q Wei and M. L. Bondy
 

Background: DNA strand breaks pose the greatest threat to genomic stability. Genetically determined mutagen sensitivity predisposes individuals to a variety of cancers, including glioma. However, polymorphisms in DNA strand break repair genes that may determine mutagen sensitivity are not well studied in cancer risk, especially in gliomas.

Methods: We correlated genotype data for tag single-nucleotide polymorphisms (tSNPs) of DNA strand break repair genes with a gamma-radiation-induced mutagen sensitivity phenotype [expressed as mean breaks per cell (B/C)] in samples from 426 glioma patients. We also conducted analysis to assess joint and haplotype effects of single-nucleotide polymorphisms (SNPs) on mutagen sensitivity. We further validate our results in an independent external control group totaling 662 subjects.

Results: Of the 392 tSNPs examined, we found that mutagen sensitivity was modified by one tSNP in the EME2 gene and six tSNPs in the RAD51L1 gene (P < 0.01). Among the six RAD51L1 SNPs tested in the validation set, one (RAD51L1 rs2180611) was significantly associated with mutagen sensitivity (P = 0.025). Moreover, we found a significant dose–response relationship between the mutagen sensitivity and the number of adverse tSNP genotypes. Furthermore, haplotype analysis revealed that RAD51L1 haplotypes F-A (zero adverse allele) and F-E (six adverse alleles) exhibited the lowest (0.42) and highest (0.93) mean B/C values, respectively. A similar dose–response relationship also existed between the mutagen sensitivity and the number of adverse haplotypes.

Conclusion: These results suggest that polymorphisms in and haplotypes of the RAD51L1 gene, which is involved in the double-strand break repair pathway, modulate gamma-radiation-induced mutagen sensitivity.

  Q Lian , Y Zhang , J Zhang , H. K Zhang , X Wu , F. F. Y Lam , S Kang , J. C Xia , W. H Lai , K. W Au , Y. Y Chow , C. W Siu , C. N Lee and H. F. Tse
 

Background— Aging and aging-related disorders impair the survival and differentiation potential of bone marrow mesenchymal stem cells (MSCs) and limit their therapeutic efficacy. Induced pluripotent stem cells (iPSCs) may provide an alternative source of functional MSCs for tissue repair. This study aimed to generate and characterize human iPSC-derived MSCs and to investigate their biological function for the treatment of limb ischemia.

Methods and Results— Human iPSCs were induced to MSC differentiation with a clinically compliant protocol. Three monoclonal, karyotypically stable, and functional MSC-like cultures were successfully isolated using a combination of CD24 and CD105+ sorting. They did not express pluripotent-associated markers but displayed MSC surface antigens and differentiated into adipocytes, osteocytes, and chondrocytes. Transplanting iPSC-MSCs into mice significantly attenuated severe hind-limb ischemia and promoted vascular and muscle regeneration. The benefits of iPSC-MSCs on limb ischemia were superior to those of adult bone marrow MSCs. The greater potential of iPSC-MSCs may be attributable to their superior survival and engraftment after transplantation to induce vascular and muscle regeneration via direct de novo differentiation and paracrine mechanisms.

Conclusions— Functional MSCs can be clonally generated, beginning at a single-cell level, from human iPSCs. Patient-specific iPSC-MSCs can be prepared as an "off-the-shelf" format for the treatment of tissue ischemia.

  T Truong , R. J Hung , C. I Amos , X Wu , H Bickeboller , A Rosenberger , W Sauter , T Illig , H. E Wichmann , A Risch , H Dienemann , R Kaaks , P Yang , R Jiang , J. K Wiencke , M Wrensch , H Hansen , K. T Kelsey , K Matsuo , K Tajima , A. G Schwartz , A Wenzlaff , A Seow , C Ying , A Staratschek Jox , P Nurnberg , E Stoelben , J Wolf , P Lazarus , J. E Muscat , C. J Gallagher , S Zienolddiny , A Haugen , H. F. M van der Heijden , L. A Kiemeney , D Isla , J. I Mayordomo , T Rafnar , K Stefansson , Z. F Zhang , S. C Chang , J. H Kim , Y. C Hong , E. J Duell , A. S Andrew , F Lejbkowicz , G Rennert , H Muller , H Brenner , L Le Marchand , S Benhamou , C Bouchardy , M. D Teare , X Xue , J McLaughlin , G Liu , J. D McKay , P Brennan and M. R. Spitz
  Background

Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies.

Methods

Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case–control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided.

Results

Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, Ptrend = 2 x 10–26), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, Ptrend = 1 x 10–10) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, Ptrend = 5 x 10–8) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, Ptrend = 2 x 10–5; rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, Ptrend = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer.

Conclusions

In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histology.

  C Tian , J Tan , X Wu , W Ye , X Liu , D Li and H. Yang
 

To describe the variation in bacterioplankton diversity within a large hypertrophic freshwater lake, as well as changes in the diversity that occurred with time, PCR- (denaturing gradient gel electrophoresis) DGGE was utilized to study water samples collected from Lake Taihu in China. To accomplish this, water samples were collected from different locations and during different months. The trophic status of these sampling sites ranged from eutrophic to hypertrophic. Cluster and multidimensional scaling analyses revealed that the temporal transition in the diversity of the bacterioplankton occurred primarily in response to a cyanobacterial bloom, and that all samples could be divided into normal-bloom, peak-bloom and winter period groups. Spatial differences in the bacterial diversity were also detected among the three sampling sites, with diversity being found to be strongly correlated with the gradient of the trophic status of the three sampling sites. In addition, these temporal and spatial changes could be characterized by several specific DGGE bands. The results were further analyzed by canonical correspondence analysis, which revealed that the bacterioplankton diversity of Lake Taihu was primarily associated with temperature, pH, total nitrogen (TN), total phosphorus (TP) and dissolved oxygen. Of these factors, TN and TP were only shown to be significant influencing factors at Wuxi, which had the highest trophic level.

  T Yu , X Wu , K. B Gupta and D. F. Kucik
 

Affinity changes and avidity modulation both contribute to activation of β2-integrin-mediated adhesion, an essential, early step in inflammation. Avidity modulation, defined as an increase in adhesiveness independent of integrin conformational changes, might be due to integrin clustering, motion, or both. Increased integrin diffusion upon leukocyte activation has been demonstrated, but whether it is proadhesive in itself, or just constitutes a mechanism for integrin clustering, remains unclear. To understand the proadhesive effects of integrin affinity changes, clustering, and motion, an experimental system was devised to separate them. Clustering and integrin motion together were induced by cytochalasin D (CD) without inducing high-affinity; integrin motion could then be frozen by fixation; and high affinity was induced independently by Mn2+. Adhesion was equivalent for fixed and unfixed cells except following pretreatment with CD or Mn2+, which increased adhesion for both. However, fixed cells were less adhesive than unfixed cells after CD, even though integrin clustering was similar. A simple explanation is that CD induces both clustering and integrin motion, fixation then stops motion on fixed cells, but integrins continue to diffuse on unfixed cells, increasing the kinetics of integrin/ICAM-1 interactions to enhance adhesion. Affinity changes are then independent of, and additive to, avidity effects.

  J Zhu , X Wu , S Goel , N. M Gowda , S Kumar , G Krishnegowda , G Mishra , R Weinberg , G Li , M Gaestel , T Muta and D. C. Gowda
 

Proinflammatory responses induced by Plasmodium falciparum glycosylphosphatidylinositols (GPIs) are thought to be involved in malaria pathogenesis. In this study, we investigated the role of MAPK-activated protein kinase 2 (MK2) in the regulation of tumor necrosis factor- (TNF-) and interleukin (IL)-12, two of the major inflammatory cytokines produced by macrophages stimulated with GPIs. We show that MK2 differentially regulates the GPI-induced production of TNF- and IL-12. Although TNF- production was markedly decreased, IL-12 expression was increased by 2–3-fold in GPI-stimulated MK2–/– macrophages compared with wild type (WT) cells. MK2–/– macrophages produced markedly decreased levels of TNF- than WT macrophages mainly because of lower mRNA stability and translation. In the case of IL-12, mRNA was substantially higher in MK2–/– macrophages than WT. This enhanced production is due to increased NF-B binding to the gene promoter, a markedly lower level expression of the transcriptional repressor factor c-Maf, and a decreased binding of GAP-12 to the gene promoter in MK2–/– macrophages. Thus, our data demonstrate for the first time the role of MK2 in the transcriptional regulation of IL-12. Using the protein kinase inhibitors SB203580 and U0126, we also show that the ERK and p38 pathways regulate TNF- and IL-12 production, and that both inhibitors can reduce phosphorylation of MK2 in response to GPIs and other toll-like receptor ligands. These results may have important implications for developing therapeutics for malaria and other infectious diseases.

  F Kaiser , D Cook , S Papoutsopoulou , R Rajsbaum , X Wu , H. T Yang , S Grant , P Ricciardi Castagnoli , P. N Tsichlis , S. C Ley and A. O'Garra
 

Stimulation of Toll-like receptors (TLRs) on macrophages and dendritic cells (DCs) by pathogen-derived products induces the production of cytokines, which play an important role in immune responses. Here, we investigated the role of the TPL-2 signaling pathway in TLR induction of interferon-β (IFN-β) and interleukin-10 (IL-10) in these cell types. It has previously been suggested that IFN-β and IL-10 are coordinately regulated after TLR stimulation. However, in the absence of TPL-2 signaling, lipopolysaccharide (TLR4) and CpG (TLR9) stimulation resulted in increased production of IFN-β while decreasing IL-10 production by both macrophages and myeloid DCs. In contrast, CpG induction of both IFN- and IFN-β by plasmacytoid DCs was decreased in the absence of TPL-2, although extracellular signal-regulated kinase (ERK) activation was blocked. Extracellular signal-related kinase–dependent negative regulation of IFN-β in macrophages was IL-10–independent, required protein synthesis, and was recapitulated in TPL-2–deficient myeloid DCs by retroviral transduction of the ERK-dependent transcription factor c-fos.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility