Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by X Tang
Total Records ( 4 ) for X Tang
  Y Peng , H Li , M Wu , X Wang , S Fan , F Liu , B Xiang , Q Guo , X Tang and S. Shen
 

Colorectal cancer (CRC) is a common malignant tumor that is associated with an increased incidence of morbidity and mortality. Nasopharyngeal carcinoma-associated gene 6 (NGX6) is a novel candidate suppressor gene of tumor metastasis, which is down-regulated in CRC. In the present study, we constructed a colorectal tissue microarray to examine the expression profiles of NGX6, phospho-c-Jun N-terminal kinase (p-JNK), and phospho-extracellular signal-regulated kinase (p-ERK ) in CRC tissues. We found that the NGX6 expression was lower in CRC tissues and metastatic lymph nodes, whereas the expressions of p-JNK and p-ERK were higher in CRC tissues, than in normal intestinal mucosa. The expressions of NGX6, p-JNK, and p-ERK were associated with the clinical pathological features of colorectal tissues. NGX6 overexpression inhibited the activation and nuclear translocation of JNK1, which led to an accumulation of p-JNK in the cytoplasm, but did not inhibit the activation and nuclear translocation of ERK1/2. NGX6 also inhibited the expression of the transcription factors AP-1 (c-jun and c-fos) and Ets-1. In addition, NGX6 overexpression decreased the expression of cyclin D1 and dramatically suppressed the transcriptional efficiency of the cyclin D1 promoter. We propose that NGX6 expression is lost in the multi-step process of human colorectal carcinogenesis. Its overexpression can inhibit the expression of transcription factors AP-1 and Ets-1, and down-regulate the transcriptional activity of the cyclin D1 promoter in human CRC.

  J. Y Tang , M Aszterbaum , M Athar , F Barsanti , C Cappola , N Estevez , J Hebert , J Hwang , Y Khaimskiy , A Kim , Y Lu , P. L So , X Tang , M. A Kohn , C. E McCulloch , L Kopelovich , D. R Bickers and E. H. Epstein
 

In vitro and epidemiologic studies favor the efficacy of nonsteroidal anti-inflammatory drugs (NSAID) in preventing skin squamous photocarcinogenesis, but there has been relatively little study of their efficacy in preventing the more common skin basal cell carcinoma (BCC) carcinogenesis. We first compared the relative anti-BCC effects of genetic deletion and NSAID pharmacologic inhibition of cyclooxygenase (COX) enzymes in the skin of Ptch1+/– mice. We then assessed the effects of celecoxib on the development of BCCs in a 3-year, double-blinded, randomized clinical trial in 60 (PTCH1+/–) patients with the basal cell nevus syndrome. In Ptch1+/– mice, genetic deletion of COX1 or COX2 robustly decreased (75%; P < 0.05) microscopic BCC tumor burden, but pharmacologic inhibition with celecoxib reduced microscopic BCCs less efficaciously (35%; P < 0.05). In the human trial, we detected a trend for oral celecoxib reducing BCC burden in all subjects (P = 0.069). Considering only the 60% of patients with less severe disease (<15 BCCs at study entry), celecoxib significantly reduced BCC number and burden: subjects receiving placebo had a 50% increase in BCC burden per year, whereas subjects in the celecoxib group had a 20% increase (Pdifference = 0.024). Oral celecoxib treatment inhibited BCC carcinogenesis in PTCH1+/– mice and had a significant anti-BCC effect in humans with less severe disease. Cancer Prev Res; 3(1); OF1–11

  E. S Kim , W. K Hong , J. J Lee , L Mao , R. C Morice , D. D Liu , C. A Jimenez , G. A Eapen , R Lotan , X Tang , R. A Newman , I. I Wistuba and J. M. Kurie
 

Non–small cell lung cancer is the primary cause of cancer-related death in Western countries. One important approach taken to address this problem is the development of effective chemoprevention strategies. In this study, we examined whether the cyclooxygenase-2 inhibitor celecoxib, as evidenced by decreased cell proliferation, is biologically active in the bronchial epithelium of current and former smokers. Current or former smokers with at least a 20 pack-year (pack-year = number of packs of cigarettes per day times number of years smoked) smoking history were randomized into one of four treatment arms (3-month intervals of celecoxib then placebo, celecoxib then celecoxib, placebo then celecoxib, or placebo then placebo) and underwent bronchoscopies with biopsies at baseline, 3 months, and 6 months. The 204 patients were primarily (79.4%) current smokers: 81 received either low-dose celecoxib or placebo and 123 received either high-dose celecoxib or placebo. Celecoxib was originally administered orally at 200 mg twice daily and the protocol subsequently increased the dose to 400 mg twice daily. The primary end point was change in Ki-67 labeling (from baseline to 3 months) in bronchial epithelium. No cardiac toxicities were observed in the participants. Although the effect of low-dose treatment was not significant, high-dose celecoxib decreased Ki-67 labeling by 3.85% in former smokers and by 1.10% in current smokers—a significantly greater reduction (P = 0.02) than that seen with placebo after adjusting for metaplasia and smoking status. A 3- to 6-month celecoxib regimen proved safe to administer. Celecoxib (400 mg twice daily) was biologically active in the bronchial epithelium of current and former smokers; additional studies on the efficacy of celecoxib in non–small cell lung cancer chemoprevention may be warranted. Cancer Prev Res; 3(2); 148–59

  A Mykoniatis , L Shen , M Fedor Chaiken , J Tang , X Tang , R. T Worrell , E Delpire , J. R Turner , K. S Matlin , P Bouyer and J. B. Matthews
 

In secretory epithelial cells, the basolateral Na+-K+-2Cl cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (PKC) by carbachol and phorbol 12-myristate 13-acetate (PMA) decreases NKCC1 surface expression in T84 cells. However, the specific endocytic entry pathway has not been defined. We used a Madin-Darby canine kidney (MDCK) cell line stably transfected with enhanced green fluorescent protein (EGFP)-NKCC1 to map NKCC1 entry during PMA exposure. At given times, we fixed and stained the cells with specific markers (e.g., dynamin II, clathrin heavy chain, and caveolin-1). We also used chlorpromazine, methyl-β-cyclodextrin, amiloride, and dynasore, blockers of the clathrin, caveolin, and macropinocytosis pathways and the vesicle "pinchase" dynamin, respectively. We found that PMA caused dose- and time-dependent NKCC1 endocytosis. After 2.5 min of PMA exposure, ~80% of EGFP-NKCC1 endocytic vesicles colocalized with clathrin and ~40% colocalized with dynamin II and with the transferrin receptor, the uptake of which is also mediated by clathrin-coated vesicles. We did not observe significant colocalization of EGFP-NKCC1 endocytic vesicles with caveolin-1, a marker of the caveolae-mediated endocytic pathway. We quantified the effect of each inhibitor on PMA-induced EGFP-NKCC1 endocytosis and found that only chlorpromazine and dynasore caused significant inhibition compared with the untreated control (61% and 25%, respectively, at 2.5 min). Together, these results strongly support the conclusion that PMA-stimulated NKCC1 endocytosis is associated with a clathrin pathway.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility