Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by X Peng
Total Records ( 5 ) for X Peng
  C Meng , X Peng , X Shi , H Wang and Y. Guo

In this study, a chemically modified homo zwitterionic polysaccharide (ZPS), sulfated chitosan, was used to examine its effects on murine immune response. The results showed that homoZPS could markedly promote the proliferation of both splenic T/B cells and adhesive cells. In particular, flow cytometry assay demonstrated that the sulfated chitosan could non-specifically activate CD3+ and CD8+ T cells proliferation in vitro. The effectiveness of sulfated chitosan as adjuvant was tested using bovine serum albumin (BSA) and diphtheria toxin (DT) as antigens and compared with that of aluminum hydroxide. The levels of specific antibodies to BSA and DT significantly increased after homoZPS vaccination. Both homoZPS and aluminum hydroxide adjuvants could protect mice against the attack of DT from edemas of spleen and tail. The present findings demonstrated the chemically derived homoZPS could be a potential candidate in the development of T-lymphocyte dependent vaccine adjuvants.

  L Zhang , X Jia , X Peng , Q Ou , Z Zhang , C Qiu , Y Yao , F Shen , H Yang , F Ma , J Wang and Z. Yuan

This paper presents an liquid chromatography (LC)/mass spectrometry (MS)-based metabonomic platform that combined the discovery of differential metabolites through principal component analysis (PCA) with the verification by selective multiple reaction monitoring (MRM). These methods were applied to analyze plasma samples from liver disease patients and healthy donors. LC–MS raw data (about 1000 compounds), from the plasma of liver failure patients (n = 26) and healthy controls (n = 16), were analyzed through the PCA method and a pattern recognition profile that had significant difference between liver failure patients and healthy controls (P < 0.05) was established. The profile was verified in 165 clinical subjects. The specificity and sensitivity of this model in predicting liver failure were 94.3 and 100.0%, respectively. The differential ions with m/z of 414.5, 432.0, 520.5, and 775.0 were verified to be consistent with the results from PCA by MRM mode in 40 clinical samples, and were proved not to be caused by the medicines taken by patients through rat model experiments. The compound with m/z of 520.5 was identified to be 1-Linoleoylglycerophosphocholine or 1-Linoleoylphosphatidylcholine through exact mass measurements performed using Ion Trap–Time-of-Flight MS and METLIN Metabolite Database search. In all, it was the first time to integrate metabonomic study and MRM relative quantification of differential peaks in a large number of clinical samples. Thereafter, a rat model was used to exclude drug effects on the abundance of differential ion peaks. 1-Linoleoylglycerophosphocholine or 1-Linoleoylphosphatidylcholine, a potential biomarker, was identified. The LC/MS-based metabonomic platform could be a powerful tool for the metabonomic screening of plasma biomarkers.

  G Murillo , X Peng , K. E.O Torres and R. G. Mehta

An emphasis in early detection and more effective treatments has decreased the mortality rate of breast cancer. Despite this decrease, breast cancer continues to be the leading cause of death among women between 40 and 55 years of age and is the second overall cause of death among women. Hence, the aim of the present study was to assess the therapeutic efficacy of deguelin, a rotenoid isolated from several plant species, which has been reported to have chemopreventive and/or chemotherapeutic effects in skin, mammary, colon, and lung cancers. The effect of deguelin on cell proliferation was evaluated using four human breast carcinoma cell lines (MCF-7, BT474, T47D, and MDA-MB-231) by cell count and MTT. Moreover, apoptosis was evaluated by acridine/ethidium staining and DNA laddering. Gene expression changes following deguelin treatment in MDA-MB-231 cells was assessed through microarray analysis. Deguelin at 1 µmol/L was found to inhibit the growth of the breast cancer cell lines tested with a range of 37% to 87%. The highest inhibition was noted for the MDA-MB-231 cell line (MDA-MB-231>BT474>MCF7>T47D>MCF12F). An arrest at the S phase of the cell cycle and apoptosis were shown in the MDA-MB-231 cells treated with deguelin. The microarray profile indicated differential expression of two independent pathways, including clusters of apoptosis and Wnt/β-catenin signaling genes in cells as a result of deguelin treatment. These studies support the antiproliferative effects of deguelin in human breast cancer cells and, perhaps more importantly, illustrate novel actions by deguelin in the Wnt signaling pathway.

  R. R Mehta , M Hawthorne , X Peng , A Shilkaitis , R. G Mehta , C. W Beattie and T. K. Das Gupta

Azurin, a member of the cupredoxin family of redox proteins, preferentially penetrates human cancer cells and exerts cytostatic and apoptotic effects. Azurin and amino acids 50-77 (p28) of azurin also produce a dose-dependent reduction in the proliferation of human mammary cancer by increasing the level of the tumor suppressor protein p53 in the cancer cell nucleus. We show that the development of 7,12-dimethylbenz[a]anthracene–induced hormone-dependent premalignant mammary ductal lesions and hormone-independent mammary alveolar lesions in mouse mammary gland organ culture is also significantly reduced by azurin and p28. The dose-dependent reduction in carcinogen-induced mammary cell proliferation by p28 was associated with an increase in the expression of p53. p28 also enhanced the inhibitory effect of a low dose of the antiestrogen tamoxifen on the development of hormone-dependent mammary ductal lesions, but did not enhance the inhibitory activity of fenretinide (N-4-hydroxyphenyl retinamide) on hormone-independent mammary alveolar lesions. These observations suggest that cupredoxins and fragments derived from them can exert a chemopreventive effect on carcinogen-induced mammary gland transformation, irrespective of hormonal environment, and enhance the inhibitory effects of tamoxifen in this model of preneoplastic mammary development. Cancer Prev Res; 3(10); 1351–60. ©2010 AACR.

  X Peng , L Pentassuglia and D. B. Sawyer

Abstract: The race for a cure to cancer continues, fueled by unprecedented discoveries of fundamental biology underlying carcinogenesis and tumorigenesis. The expansion of the target list and tools to approach them is moving the oncology community extraordinarily rapidly to clinical trials, bringing new hope for cancer patients. This effort is also propelling biological discoveries in cardiovascular research, because many of the targets being explored in cancer play fundamental roles in the heart and vasculature. The combined efforts of cardiovascular and cancer biologists, along with clinical investigators in these fields, will be needed to understand how to safely exploit these efforts. Here, we discuss a few of the many research foci in oncology where we believe such collaboration will be particularly important.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility