Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by William J. Jagust
Total Records ( 2 ) for William J. Jagust
  William J. Jagust , Dan Bandy , Kewei Chen , Norman L. Foster , Susan M. Landau , Chester A. Mathis , Julie C. Price , Eric M. Reiman , Daniel Skovronsky and Robert A. Koeppe
  Background: This is a progress report of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) positron emission tomography (PET) Core. Methods: The Core has supervised the acquisition, quality control, and analysis of longitudinal [18F]fluorodeoxyglucose PET (FDG-PET) data in approximately half of the ADNI cohort. In an “add on” study, approximately 100 subjects also underwent scanning with [11C] Pittsburgh compound B PET for amyloid imaging. The Core developed quality control procedures and standardized image acquisition by developing an imaging protocol that has been widely adopted in academic and pharmaceutical industry studies. Data processing provides users with scans that have identical orientation and resolution characteristics despite acquisition on multiple scanner models. The Core labs have used many different approaches to characterize differences between subject groups (Alzheimer’s disease, mild cognitive impairment, controls), to examine longitudinal change over time in glucose metabolism and amyloid deposition, and to assess the use of FDG-PET as a potential outcome measure in clinical trials. Results: ADNI data indicate that FDG-PET increases statistical power over traditional cognitive measures, might aid subject selection, and could substantially reduce the sample size in a clinical trial. Pittsburgh compound B PET data showed expected group differences, and identified subjects with significant annual increases in amyloid load across the subject groups. The next activities of the PET core in ADNI will entail developing standardized protocols for amyloid imaging using the [18F]-labeled amyloid imaging agent AV45, which can be delivered to virtually all ADNI sites. Conclusions: ADNI has demonstrated the feasibility and utility of multicenter PET studies and is helping to clarify the role of biomarkers in the study of aging and dementia.
  Michael W. Weiner , Paul S. Aisen , Clifford R. Jack Jr. , William J. Jagust , John Q. Trojanowski , Leslie Shaw , Andrew J. Saykin , John C. Morris , Nigel Cairns , Laurel A. Beckett , Arthur Toga , Robert Green , Sarah Walter , Holly Soares , Peter Snyder , Eric Siemers , William Potter , Patricia E. Cole and Mark Schmidt
  The Alzheimer’s Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year research project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility