Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by W.R. Windham
Total Records ( 2 ) for W.R. Windham
  W.R. Windham , D.P. Smith , M.E. Berrang , K.C. Lawrence and P.W. Feldner
  Broiler processing may result in fecal contamination of the surfaces of carcasses. Fecal contaminants on broiler carcasses are prohibited due to the potential presence of bacterial pathogens. The objective of this study was to determine the effectiveness of the hyperspectral imaging system to detect cecal contamination of known mass. On each of three replicate sample days, twenty-four eviscerated, pre-chilled broiler carcasses were collected from a commercial processing plant. Broiler carcasses were cut longitudinally into contra-lateral halves using a sanitized saw. Cecal contents from the same flock were also collected and used to contaminate carcass. Contents of multiple cecal were combined, homogenized and used to contaminate carcass. Carcass halves were imaged uncontaminated and cecal contents (10, 50, or 100 mg) were applied to the carcass half, and then re-imaged. Cecal detection results varied due to contaminate detection threshold. The imaging system correctly identified 100% cecal mass applied at a threshold of 1.00 and 1.05 but also incorrectly identified 252 and 65 carcass features, respectively that were not contaminates (false positives). False negative were only associated with the 10mg mass and a detection threshold of 1.10. The percentage of true positive cecal pixels (ie. ground truth) detected also varied due to the detection threshold. Averaged across cecal mass, the percentage of the cecal ground truth detected was 74, 55 and 35% for the 1.00, 1.05 and 1.10 threshold, respectively. The percentage of contaminated pixels not detected were a spectral mixture of cecal and uncontaminated skin. Detection of mixed pixels in small contaminants (ie. 10mg and less) or an aggregate of several single-pixels is essential for contaminant identification. Detection of mixed pixels in large contaminants is not significant to overall contaminant identification.
  W.R. Windham , G.W. Heitschmidt , D.P. Smith and M.E. Berrang
  The contents of the upper digestive tract (i.e. crop, proventriculus and gizzard) may serve as a source of carcass contamination during broiler processing. The crop as been identified as a source of Salmonella and Campylobacter on contaminated carcasses and is more likely to rupture than the ceca during commercial evisceration. The objective of this study was to determine the effectiveness of hyperspectral imaging for detecting ingesta contamination spots varying in mass from the crop and gizzard. Pre-chilled broiler carcasses were collected from a commercial processing plant. Crop and gizzard contents were also aseptically collected and enumerated for Campylobacter, coliforms, E. coli and total aerobic bacteria. Broiler carcasses were imaged and then contaminated with a spot of known mass (10, 50, or 100 mg) of crop or gizzard contents. Carcasses were then re-imaged. The imaging system correctly detected 100% of the crop and gizzard contents regardless of the mass or spot size. However, not every pixel associated with a given spot (contaminant ground truth) was detected. Detection of crop and gizzard content contaminant ground truth pixels averaged 72 and 53%, respectively. The mean number of bacteria in the crop contents were as follows: E. coli 4.0 log, coliforms 4.1 log, and total aerobic bacteria 5.7 log CFU/g of crop contents. Crop contents in the current study were Campylobacter negative. Applying crop contents in the amounts of about 9, 54, and 231 mg resulted in significant (P< 0.05) increases in all bacterial population measured, with the biggest increase being noted for total aerobic bacteria. Gizzard contents contained only 4.6 log CFU/g of total aerobic bacteria. The total added bacterial load from contamination with known amounts of crop and gizzard contents did not significantly increase whole carcass counts of all bacteria enumerated. Based on these counts and numbers of bacteria found in gizzard, carcass contamination with visible ingesta does not appear to significantly increase bacterial load.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility