Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by W.M.W. Yusoff
Total Records ( 6 ) for W.M.W. Yusoff
  P. Abdeshahian , M.G. Dashti , M.S. Kalil and W.M.W. Yusoff
  Biomass feedstock has received great interest to be used as an alternative and renewable source of energy. Lignocellulosic biomass has significant potential to contribute to the biofuel production to decrease green house gas emission and global warming. Researchers with a tremendous enthusiasm have pursued biofuel development using biomass feedstocks over the past decades. Emerging first generation and second generation of biofuels introduced promising renewable energy resources by utilization of sustainable and abundant biomass sources as raw materials. In this study, biomass-based transportation biofuels and biochemical processes for the production of first generation and second generation of biofuels are discussed.
  H.M. Ibrahim , W.M.W. Yusoff , A.A. Hamid and O. Omar
  The objective of this study was to enhance the production of Cyclodextrin glucanotransferase (CGTase) produced by a local isolate Bacillus G1. CGTase produced in an optimized medium using different fermentation modes was investigated. The performance of batch mode, continuous mode and fed-batch mode was achieved in 5 L-stirred tank fermenter. Maximum CGTase production (77.49 U mL-1) was achieved in fed-batch fermentation with 23.7% improvement compared to batch fermentation (62.63) and 16.6% improvement compared to continuous fermentation (66.47). CGTase productivity in fed-batch fermentation (1.6 U/mL/h) improved by 14.3% compared to that obtained by continuous fermentation (1.4 U/mL/h) and 23.1% improvement compared to batch fermentation (1.3 U/mL/h).
  N.K.N. Al-Shorgani , M.S. Kalil , E. Ali , W.M.W. Yusoff and A.A. Hamid
  Butanol is an important industrial chemical and has gained attention as an important fuel because of its advantages of being less corrosive and water tolerant as compared to the ethanol. This study revealed the effects of butyric acid as an additive on growth and Acetone-butanol-ethanol (ABE) production using batch culture of Clostridium saccharoperbutylacetonicum N1-4. Different combinations of glucose and butyric acid were studied to finalize the best productive ratio for ABE and butanol production. The highest ABE and butanol production was obtained when 4 g L-1 of butyric acid was used in the presence of 30 g L-1 of glucose. The inhibitory effects of butyric acid on bacterial growth were also investigated using C. saccharoperbutylacetonicum N1-4 and mild inhibitory effects were found at high butyric acid concentration. On the other hand, no linear correlation between butyric acid and butanol production was observed. Production of 17.76 g L-1 butanol with a productivity of 0.15 g L-1 h-1 from 4 g L-1 of butyric acid proved the ability of C. saccharoperbutylacetonicum N1-4 to be tolerant to the certain concentration of butyric acid for the enhanced butanol production. Butyric acid was not only contributing as an additive or stimulating agent to the butanol pathway but also was being utilized as a co-substrate. Enhanced butanol production using growing cells of C. saccharoperbutylacetonicum N1-4 in the presence of specific concentration of butyric acid (4 g L-1 butyric acid) as a co-substrate with glucose can be carried out without any remarkable inhibition to bacterial growth.
  H. Alshiyab , M.S. Kalil , A.A. Hamid and W.M.W. Yusoff
  The aim of this study was to investigate the influence of some environmental factors on bacterial metabolism. Fermentative hydrogen production by C. acetobutylicum, using glucose as the substrate. The effect of initial pH (4-8), inoculum size (1-20% (v/v)) and glucose concentration (1-30 g L-1) on hydrogen production were studied. The optimum cultivation temperature for hydrogen production was at 30 °C. The results show that substrate concentration and inoculum size resulted in hydrogen yield (YP/S) of 391 mL g-1 glucose utilized with maximum hydrogen productivity of 77.5 mL/L/h. Higher substrate concentration or inoculum size adversely affects hydrogen production, which decreases hydrogen yield by 15% to 334 mL g-1 glucose utilized when 30% (v/v) inoculum size was used. The use of 30 g L-1 substrate concentration resulted in a 75% decrease to 97 mL g-1 glucose supplied. Concluded that proper Xo/So enhanced the hydrogen production.
  H. Alshiyab , M.S. Kalil , A.A. Hamid and W.M.W. Yusoff
  The effect of removal of resultant gas resulted in enhancement of the H2 yield. The technique of CO2 scavenging resulted in H2 yield being improved from 408 mL g-1 to reach the maximum of 422 mL g-1. The highest hydrogen productivity of 87.9 ml L-1 h-1 was obtained by CO2 scavenging. Biomass concentration was enhanced to 1.47 g L-1, YP/X of 287 ml g-1 L-1, YX/S of 0.294 and YH2/s of 0.0377 by the use of CO2 scavenging. The results suggested that the presence of the gaseous products in fermentation medium and headspace adversely effect biomass growth and hydrogen production.
  Noura, K.M. Salih , N.H. Jusuf , A.A. Hamid and W.M.W. Yusoff
  In the present study, Ten soil samples were examined and the pH of the soil was recorded. For bacterial isolation, a sterile nutrient and blood agars were used. Gram stain and biochemical tests were done for identification. A total of 384 genus were isolated, 314 (81.8%) were identified as Pseudomonas species of which 245 (78.0%) were Pseudomonas aeruginosa, 42 (13.4%) were Pseudomonas fluorescens, 13 (4.2%) were Pseudomonas mallei, 10 (3.1%) were Pseudomonas putida and 4 (1.3%) were Pseudomonas syringe and are regarded as pathogenic and harmful to man, animal and plants. This study shows that Pseudomonas aeruginosa had a high adaptation capability to grow in soil samples from Ternate, Indonesia. The rest of the bacterial isolates (18.2%) were identified as follows: 24 samples (6.2%) were Micrococcus, 23 samples (6.0%) were E. coli, 12 samples (3.1%) were Pasteurella and 11 samples (2.9%) were Staphylococcus. Pencillium was also isolated.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility