Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by W Lu
Total Records ( 4 ) for W Lu
  A Beeghly Fadiel , W Lu , J. R Long , X. o Shu , Y Zheng , Q Cai , Y. T Gao and W. Zheng

Matrix metalloproteinase-2 (MMP-2) is a well-known mediator of cancer metastasis but is also thought to be involved in several aspects of cancer development, including cell growth and inflammation. We comprehensively characterized genetic variation across the MMP-2 gene and evaluated associations with breast cancer risk using a two-phase (phase 1 and phase 2) study design. A total of 39 polymorphisms were genotyped among 6,066 Chinese women participating in the Shanghai Breast Cancer Study, a population-based case-control study. Two MMP-2 promoter polymorphisms were found to have consistent results between phase 1 and phase 2 participants, and to be significantly associated with breast cancer risk among all genotyped participants. Minor allele homozygotes for rs11644561 (G/A) were found to have a decreased risk of breast cancer [odds ratio (OR), 0.6; 95% confidence interval (CI), 0.3-1.0] compared with major allele homozygotes, as were minor allele homozygotes for rs11643630 (T/G) compared with major allele homozygotes (OR, 0.8; 95% CI, 0.7-1.0). When analyzed together, a rare haplotype (4.4%) with both rs11644561 A and rs11643630 G was found to have a significantly reduced risk of breast cancer (OR, 0.6; 95% CI, 0.4-0.8). In addition, rare allele homozygotes for rs243865 (–1306 C/T) tended to have an increased risk of breast cancer (OR, 1.4; 95% CI, 0.9-2.4). Together, these findings support a role for MMP-2 genetic variation in breast cancer susceptibility. (Cancer Epidemiol Biomarkers Prev 2009;18(6):1770–6)

  H. N Tinsley , B. D Gary , J Thaiparambil , N Li , W Lu , Y Li , Y. Y Maxuitenko , A. B Keeton and G. A. Piazza

Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme–specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin–mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs. Cancer Prev Res; 3(10); 1303–13. ©2010 AACR.

  W Lu , P Ran , D Zhang , G Peng , B Li , N Zhong and J. Wang

In pulmonary arterial smooth muscle cells (PASMCs), Ca2+ influx through store-operated Ca2+ channels thought to be composed of canonical transient receptor potential (TRPC) proteins is an important determinant of intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. Sildenafil, a type V phosphodiesterase inhibitor that increases cellular cGMP, is recently identified as a promising agent for treatment of pulmonary hypertension. We previously demonstrated that chronic hypoxia elevated basal [Ca2+]i in PASMCs due in large part to enhanced store-operated Ca2+ entry (SOCE); moreover, ex vivo exposure to prolonged hypoxia (4% O2 for 60 h) upregulated TRPC1 and TRPC6 expression in PASMCs. We examined the effect of sildenafil on basal [Ca2+]i, SOCE, and the expression of TRPC in PASMCs under prolonged hypoxia exposure. We also examined the effect of sildenafil on TRPC1 and TRPC6 expression in pulmonary arterial smooth muscle (PA) from rats that developed chronically hypoxic pulmonary hypertension (CHPH). Compared with vehicle control, treatment with sildenafil (300 nM) inhibited prolonged hypoxia induced increases of 1) basal [Ca2+]i, 2) SOCE, and 3) mRNA and protein expression of TRPC in PASMCs. Moreover, sildenafil (50 mg · kg–1 · day–1) inhibited mRNA and protein expression of TRPC1 and TRPC6 in PA from chronically hypoxic (10% O2 for 21 days) rats, which was associated with decreased right ventricular pressure and right ventricular hypertrophy. Furthermore, we found, in PASMCs exposed to prolonged hypoxia, that knockdown of TRPC1 or TRPC6 by their specific small interference RNA attenuated the hypoxic increases of SOCE and basal [Ca2+]i, suggesting a cause and effect link between increases of TRPC1 and TRPC6 expression and the hypoxic increases of SOCE and basal [Ca2+]i. These results suggest that sildenafil may alter basal [Ca2+]i in PASMCs by decreasing SOCE through downregulation of TRPC1 and TRPC6 expression, thereby contributing to decreased vascular tone of pulmonary arteries during the development of CHPH.

  W Lu , P Ran , D Zhang , N Lai , N Zhong and J. Wang

Recent advances have identified an important role of bone morphogenetic protein 4 (BMP4) in pulmonary vascular remodeling, yet the underlying mechanisms remain largely unexplored. We have previously found that Ca2+ influx through store-operated calcium channels (SOCC), which are mainly thought to be composed of canonical transient receptor potential (TRPC) proteins, likely contribute to the pathogenic development of chronic hypoxic pulmonary hypertension. In this study, we investigated the effect of BMP4 on expression of TRPC and store-operated Ca2+ entry (SOCE) in pulmonary arterial smooth muscle cells (PASMCs). Real-time quantitative PCR and Western blotting revealed that treatment with BMP4 (50 ng/ml, 60 h) increased TRPC1, TRPC4, and TRPC6 mRNA and protein expression in growth-arrested rat distal PASMCs. Moreover, in comparison to vehicle control, cells treated with BMP4 also exhibited enhanced SOCE, and elevated basal intracellular calcium concentration ([Ca2+]i) as determined by fluorescent microscopy using the Ca2+ indicator Fura-2 AM. Perfusing cells with Ca2+-free Krebs-Ringer bicarbonate solution (KRBS) or KRBS containing SOCC antagonists SKF-96365 or NiCl2 attenuated the increases in basal [Ca2+]i caused by BMP4. Specific knockdown of BMP4 by small interference RNA significantly decreased the mRNA and protein expression of TRPC1, TRPC4, and TRPC6 and reduced SOCE and basal [Ca2+]i in serum-stimulated PASMCs. We conclude that BMP4 regulates calcium signaling in PASMCs likely via upregulation of TRPC expression, leading to enhanced SOCE and basal [Ca2+]i in PASMCs, and by this mechanism contributes to pulmonary vascular remodeling during pulmonary arterial hypertension.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility