Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by W Liu
Total Records ( 13 ) for W Liu
  B Xiang , M Yi , L Wang , W Liu , W Zhang , J Ouyang , Y Peng , W Li , M Zhou , H Liu , M Wu , R Wang , X Li and G. Li
 

Oxidored-nitro domain containing protein 1 (NOR1) gene is a novel nitroreductase gene first isolated from nasopharyngeal carcinoma (NPC). It plays an important role in the formation of chemical carcinogen and the carcinogenesis of NPC for its nitrosation function. Overexpression of the wild-type NOR1 gene in nasopharyngeal carcinoma cells is effective to inhibit cell growth and proliferation. In this study, for the first time, we generated a highly specific NOR1 antibody and analyzed NOR1 distribution in the human tissues and NPC biopsies. The results showed that NOR1 protein is predominantly expressed in human nasopharynx and tracheal tissues. Human heart, liver, spleen, stomach, colon, kidney, skeletal muscle, thymus, and pancreas are all deficient of NOR1 protein. More importantly, we performed immunohistochemistry assay of NOR1 protein expression in the NPC tissues, and the result showed that NOR1 protein is frequently down-expressed in NPC. These data shed light on the selectivity of potential physiological functions of NOR1 and provides an indispensable reference to the carcinogenesis process of NPC and to identify or validate tissue-specific drug targets.

  L Ji , F Fu , L Zhang , W Liu , X Cai , Q Zheng , H Zhang and F. Gao
 

It is well known that insulin possesses a cardioprotective effect and that insulin resistance is closely related to cardiovascular diseases. Peroxynitrite (ONOO) formation may trigger oxidative/nitrative stress and represent a major cytotoxic effect in heart diseases. This study was designed to investigate whether insulin attenuates ONOO generation and oxidative/nitrative stress in acute myocardial ischemia/reperfusion (MI/R). Adult male rats were subjected to 30 min of myocardial ischemia and 3 h of reperfusion. Rats randomly received vehicle, insulin, or insulin plus wortmannin. Arterial blood pressure and left ventricular pressure were monitored throughout the experiment. Insulin significantly improved cardiac functions and reduced myocardial infarction, apoptotic cell death, and blood creatine kinase/lactate dehydrogenase levels following MI/R. Myocardial ONOO formation was significantly attenuated after insulin treatment. Moreover, insulin resulted in a significant increase in Akt and endothelial nitric oxide (NO) synthase (eNOS) phosphorylation, NO production, and antioxidant capacity in ischemic/reperfused myocardial tissue. On the other hand, insulin markedly reduced MI/R-induced inducible NOS (iNOS) and gp91phox expression in cardiac tissue. Inhibition of insulin signaling with wortmannin not only blocked the cardioprotection of insulin but also markedly attenuated insulin-induced antioxidative/antinitrative effect. Furthermore, the suppression on ONOO formation by either insulin or an ONOO scavenger uric acid reduced myocardial infarct size in rats subjected to MI/R. We concluded that insulin exerts a cardioprotective effect against MI/R injury by blocking ONOO formation. Increased physiological NO production (via eNOS phosphorylation) and superoxide anion reduction contribute to the antioxidative/antinitrative effect of insulin, which can be reversed by inhibiting phosphatidylinositol 3'-kinase. These results provide important novel information on the mechanisms of cardiovascular actions of insulin.

  E. B Binder , M. J Owens , W Liu , T. C Deveau , A. J Rush , M. H Trivedi , M Fava , B Bradley , K. J Ressler and C. B. Nemeroff
 

Context  The corticotropin-releasing factor (CRF, or corticotropin-releasing hormone) and arginine vasopressin systems have been implicated in the pathophysiology of anxiety and depressive disorders and response to antidepressant treatment.

Objective  To study the association of genetic variants in 10 genes that regulate the CRF and arginine vasopressin systems with treatment response to citalopram in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) sample (N = 1768).

Design  Pharmacogenetic association study derived from the STAR*D study, a multicenter, prospective, open, 12-week effectiveness trial.

Setting  Outpatient primary care and psychiatric clinics.

Patients  Individuals with nonpsychotic major depressive disorder for whom DNA was available who were subsequently treated with citalopram hydrobromide for 4 to 12 weeks.

Intervention  Flexible doses of citalopram.

Main Outcome Measure  Association of genetic polymorphisms in genes encoding the CRF system with response and remission to citalopram treatment at exit visit.

Results  One single-nucleotide polymorphism (SNP) (rs10473984) within the CRHBP locus showed a significant association with both remission (P = 6.0 x 10–6; corrected, P = .0026) and reduction in depressive symptoms (P = 7.0 x 10–7; corrected, P = .00031) in response to citalopram. The T allele of this SNP was associated with poorer treatment outcome in 2 of the 3 ethnic subsamples (African American and Hispanic), despite large differences in minor allele frequency. This association was more pronounced in patients with features of anxious depression (P = .008). The nonresponse allele was shown to be associated with overall higher plasma corticotropin levels and more pronounced dexamethasone suppression of corticotropin.

Conclusions  These data indicate that a genetic variant within the CRHBP locus affects response to citalopram in African American and Hispanic patients, suggesting a role for this gene and for the CRF system in antidepressant treatment response.

  D Morrow , J. P Cullen , W Liu , S Guha , C Sweeney , Y. A Birney , N Collins , D Walls , E. M Redmond and P. A. Cahill
 

Objective— Notch, VEGF, and components of the Hedgehog (Hh) signaling pathway have been implicated in vascular morphogenesis. The role of Notch in mediating hedgehog control of adult vascular smooth muscle cell (SMC) growth and survival remains unexplored.

Methods and Results— In cultured SMCs, activation of Hh signaling with recombinant rShh (3.5 µg/mL) or plasmid encoded Shh increased Ptc1 expression, enhanced SMC growth and survival and promoted Hairy-related transcription factor (Hrt) expression while concomitantly increasing VEGF-A levels. These effects were significantly reversed after Hh inhibition with cyclopamine. Shh-induced stimulation of Hrt-3 mRNA and SMC growth and survival was attenuated after inhibition of Notch-mediated CBF-1/RBP-Jk-dependent signaling with RPMS-1 while siRNA knockdown of Hrt-3 inhibited SMC growth and survival. Recombinant VEGF-A increased Hrt-3 mRNA levels while siRNA knockdown abolished rShh stimulated VEGF-A expression while concomitantly inhibiting Shh-induced increases in Hrt-3 mRNA levels, proliferating cell nuclear antigen (PCNA), and Notch 1 IC expression, respectively. Hedgehog components were expressed within intimal SMCs of murine carotid arteries after vascular injury concomitant with a significant increase in mRNA for Ptc1, Gli2, VEGF-A, Notch 1, and Hrts.

Conclusion— Hedgehog promotes a coordinate regulation of Notch target genes in adult SMCs via VEGF-A.

  S. L Zheng , V. L Stevens , F Wiklund , S. D Isaacs , J Sun , S Smith , K Pruett , K. E Wiley , S. T Kim , Y Zhu , Z Zhang , F. C Hsu , A. R Turner , J. E Johansson , W Liu , J. W Kim , B. L Chang , D Duggan , J Carpten , C Rodriguez , W Isaacs , H Gronberg and J. Xu
 

Single nucleotide polymorphisms (SNP) at 11q13 were recently implicated in prostate cancer risk by two genome-wide association studies and were consistently replicated in multiple study populations. To explore prostate cancer association in the regions flanking these SNPs, we genotyped 31 tagging SNPs in a ~110 kb region at 11q13 in a Swedish case-control study (Cancer of the Prostate in Sweden), including 2,899 cases and 1,722 controls. We found evidence of prostate cancer association for the previously implicated SNPs including rs10896449, which we termed locus 1. In addition, multiple SNPs on the centromeric side of the region, including rs12418451, were also significantly associated with prostate cancer risk (termed locus 2). The two groups of SNPs were separated by a recombination hotspot. We then evaluated these two representative SNPs in an additional ~4,000 cases and ~3,000 controls from three study populations and confirmed both loci at 11q13. In the combined allelic test of all four populations, P = 4.0 x 10–11 for rs10896449 at locus 1 and P = 1.2 x 10–6 for rs12418451 at locus 2, and both remained significant after adjusting for the other locus and study population. The prostate cancer association at these two 11q13 loci was unlikely confounded by prostate-specific antigen (PSA) detection bias because neither SNP was associated with PSA levels in controls. Unlike locus 1, in which no known gene is located, several putative mRNAs are in close proximity to locus 2. Additional confirmation studies at locus 2 and functional studies for both loci are needed to advance our knowledge on the etiology of prostate cancer. (Cancer Epidemiol Biomarkers Prev 2009;18(6):1815–20)

  Y Wang , J Li , Y Cui , T Li , K. M Ng , H Geng , H Li , X. s Shu , W Liu , B Luo , Q Zhang , T. S. K Mok , W Zheng , X Qiu , G Srivastava , J Yu , J. J.Y Sung , A. T.C Chan , D Ma , Q Tao and W. Han
 

Closely located at the tumor suppressor locus 16q22.1, CKLF-like MARVEL transmembrane domain-containing member 3 and 4 (CMTM3 and CMTM4) encode two CMTM family proteins, which link chemokines and the transmembrane-4 superfamily. In contrast to the broad expression of both CMTM3 and CMTM4 in normal human adult tissues, only CMTM3 is silenced or down-regulated in common carcinoma (gastric, breast, nasopharyngeal, esophageal, and colon) cell lines and primary tumors. CMTM3 methylation was not detected in normal epithelial cell lines and tissues, with weak methylation present in only 5 of 35 (14%) gastric cancer adjacent normal tissues. Furthermore, immunohistochemistry showed that CMTM3 protein was absent in 12 of 35 (34%) gastric and 1 of 2 colorectal tumors, which was well correlated with its methylation status. The silencing of CMTM3 is due to aberrant promoter CpG methylation that could be reversed by pharmacologic demethylation. Ectopic expression of CMTM3 strongly suppressed the colony formation of carcinoma cell lines. In addition, CMTM3 inhibited tumor cell growth and induced apoptosis with caspase-3 activation. Thus, CMTM3 exerts tumor-suppressive functions in tumor cells, with frequent epigenetic inactivation by promoter CpG methylation in common carcinomas. [Cancer Res 2009;69(12):5194–201]

  O Zabirnyk , W Liu , S Khalil , A Sharma and J. M. Phang
 

Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  T. E Kimura , J Jin , M Zi , S Prehar , W Liu , D Oceandy , J. i Abe , L Neyses , A. H Weston , E. J Cartwright and X. Wang
 

Rationale: Mitogen-activated protein kinase (MAPK) pathways provide a critical connection between extrinsic and intrinsic signals to cardiac hypertrophy. Extracellular signal-regulated protein kinase (ERK)5, an atypical MAPK is activated in the heart by pressure overload. However, the role of ERK5 plays in regulating hypertrophic growth and hypertrophy-induced apoptosis is not completely understood.

Objective: Herein, we investigate the in vivo role and signaling mechanism whereby ERK5 regulates cardiac hypertrophy and hypertrophy-induced apoptosis.

Methods and Results: We generated and examined the phenotypes of mice with cardiomyocyte-specific deletion of the erk5 gene (ERK5cko). In response to hypertrophic stress, ERK5cko mice developed less hypertrophic growth and fibrosis than controls. However, increased apoptosis together with upregulated expression levels of p53 and Bad were observed in the mutant hearts. Consistently, we found that silencing ERK5 expression or specific inhibition of its kinase activity using BIX02189 in neonatal rat cardiomyocytes (NRCMs) reduced myocyte enhancer factor (MEF)2 transcriptional activity and blunted hypertrophic responses. Furthermore, the inhibition of MEF2 activity in NRCMs using a non-DNA binding mutant form of MEF2 was found to attenuate the ERK5-regulated hypertrophic response.

Conclusions: These results reveal an important function of ERK5 in cardiac hypertrophic remodeling and cardiomyocyte survival. The role of ERK5 in hypertrophic remodeling is likely to be mediated via the regulation of MEF2 activity.

  A Lin , J Qian , X Li , X Yu , W Liu , Y Sun , N Chen , C Mei and for the Icodextrin National Multi center Cooperation Group
 

Background and objectives: While peritoneal dialysis with icodextrin is commonly used in patients with poor peritoneal membrane characteristics, the data on the usefulness of this solution in patients with lower transport characteristics are limited. The study was designed to compare icodextrin to glucose in Chinese prevalent peritoneal dialysis patients of different peritoneal transport characteristics (PET) categories.

Design, setting, participants, & measurements: This was a randomized, double-blind, perspective control study. Stable prevalent continuous ambulatory peritoneal dialysis (CAPD) patients were randomized to either 7.5% icodextrin (ICO) or 2.5% glucose (GLU) solution for 4 wk. Peritoneal membrane function was measured to define PET category in baseline. Creatinine clearance (Ccr), urea nitrogen clearance (CBUN), ultrafiltration (UF) during the long night dwell, dialysate, and metabolic biomarkers were measured at baseline, 2, and 4 wk. UF, Ccr, and CBUN were compared among different PET categories.

Results: A total of 201 CAPD patients were enrolled in the study. There were no baseline differences between the groups. Following 2 and 4 wk of therapy, Ccr, CBUN, and UF were all significantly higher in the ICO versus the GLU group. Additionally, switching to ICO resulted in a significant increase in UF in high, high-average, and low-average transporters as compared with baseline. The extent of increased UF was more obvious in higher transporters. Blood cholesterol level in the ICO group decreased significantly than that in the GLU group.

Conclusion: Compared with glucose-based solution, 7.5% icodextrin significantly improved UF and small solute clearance, even in patients with low-average peritoneal transport.

  A Liu , A. D Patterson , Z Yang , X Zhang , W Liu , F Qiu , H Sun , K. W Krausz , J. R Idle , F. J Gonzalez and R. Dai
 

Fenofibrate, widely used for the treatment of dyslipidemia, activates the nuclear receptor, peroxisome proliferator-activated receptor . However, liver toxicity, including liver cancer, occurs in rodents treated with fibrate drugs. Marked species differences occur in response to fibrate drugs, especially between rodents and humans, the latter of which are resistant to fibrate-induced cancer. Fenofibrate metabolism, which also shows species differences, has not been fully determined in humans and surrogate primates. In the present study, the metabolism of fenofibrate was investigated in cynomolgus monkeys by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS)-based metabolomics. Urine samples were collected before and after oral doses of fenofibrate. The samples were analyzed in both positive-ion and negative-ion modes by UPLC-QTOFMS, and after data deconvolution, the resulting data matrices were subjected to multivariate data analysis. Pattern recognition was performed on the retention time, mass/charge ratio, and other metabolite-related variables. Synthesized or purchased authentic compounds were used for metabolite identification and structure elucidation by liquid chromatographytandem mass spectrometry. Several metabolites were identified, including fenofibric acid, reduced fenofibric acid, fenofibric acid ester glucuronide, reduced fenofibric acid ester glucuronide, and compound X. Another two metabolites (compound B and compound AR), not previously reported in other species, were characterized in cynomolgus monkeys. More importantly, previously unknown metabolites, fenofibric acid taurine conjugate and reduced fenofibric acid taurine conjugate were identified, revealing a previously unrecognized conjugation pathway for fenofibrate.

  A Liu , A. D Patterson , Z Yang , X Zhang , W Liu , F Qiu , H Sun , K. W Krausz , J. R Idle , F. J Gonzalez and R. Dai
 

Fenofibrate, widely used for the treatment of dyslipidemia, activates the nuclear receptor, peroxisome proliferator-activated receptor . However, liver toxicity, including liver cancer, occurs in rodents treated with fibrate drugs. Marked species differences occur in response to fibrate drugs, especially between rodents and humans, the latter of which are resistant to fibrate-induced cancer. Fenofibrate metabolism, which also shows species differences, has not been fully determined in humans and surrogate primates. In the present study, the metabolism of fenofibrate was investigated in cynomolgus monkeys by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS)-based metabolomics. Urine samples were collected before and after oral doses of fenofibrate. The samples were analyzed in both positive-ion and negative-ion modes by UPLC-QTOFMS, and after data deconvolution, the resulting data matrices were subjected to multivariate data analysis. Pattern recognition was performed on the retention time, mass/charge ratio, and other metabolite-related variables. Synthesized or purchased authentic compounds were used for metabolite identification and structure elucidation by liquid chromatographytandem mass spectrometry. Several metabolites were identified, including fenofibric acid, reduced fenofibric acid, fenofibric acid ester glucuronide, reduced fenofibric acid ester glucuronide, and compound X. Another two metabolites (compound B and compound AR), not previously reported in other species, were characterized in cynomolgus monkeys. More importantly, previously unknown metabolites, fenofibric acid taurine conjugate and reduced fenofibric acid taurine conjugate were identified, revealing a previously unrecognized conjugation pathway for fenofibrate.

  F Saltel , E Mortier , V. P Hytonen , M. C Jacquier , P Zimmermann , V Vogel , W Liu and B. Wehrle Haller
 

A talin intermolecular interaction autoinhibits its own activation and regulates β3-integrin binding. When bound, β3-integrin undergoes structural alterations that prevent its β and subunits from associating, maintaining β3-integrin's clustering capability.

  W Liu , T Meckel , P Tolar , H. W Sohn and S. K. Pierce
 

Antibody affinity maturation, a hallmark of adaptive immune responses, results from the selection of B cells expressing somatically hypermutated B cell receptors (BCRs) with increased affinity for antigens. Despite the central role of affinity maturation in antibody responses, the molecular mechanisms by which the increased affinity of a B cell for antigen is translated into a selective advantage for that B cell in immune responses is incompletely understood. We use high resolution live-cell imaging to provide evidence that the earliest BCR-intrinsic events that follow within seconds of BCR–antigen binding are highly sensitive to the affinity of the BCR for antigen. High affinity BCRs readily form oligomers and the resulting microclusters grow rapidly, resulting in enhanced recruitment of Syk kinase and calcium fluxes. Thus, B cells are able to read the affinity of antigen by BCR-intrinsic mechanisms during the earliest phases of BCR clustering, leading to the initiation of B cell responses.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility