Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by W Lin
Total Records ( 5 ) for W Lin
  M.L Escolar , M.D Poe , J.K Smith , J.H Gilmore , J Kurtzberg , W Lin and M. Styner

BACKGROUND AND PURPOSE: It is not possible to determine if neonates diagnosed with Krabbe disease through statewide neonate screening programs will develop the disease as infants, juveniles, or adults. The only available treatment for this fatal neurodegenerative condition is unrelated umbilical cord transplantation, but this treatment is only effective before clinical symptoms appear. Therefore, a marker of disease progression is needed. The purpose of this study was to evaluate the use of diffusion tensor imaging (DTI) with fiber tracking in identifying early changes in major motor tracts of asymptomatic neonates with infantile Krabbe disease.

MATERIALS AND METHODS: Six neonates with infantile Krabbe disease identified because of family history underwent brain MR imaging within the first 4 weeks of life. Six-direction DTI and quantitative tractography of the corticospinal tracts were performed. Hypothesis tests, 1 for each hemisphere, were used to determine whether the fractional anisotropy (FA) ratio of the neonates with infantile Krabbe disease was significantly different from that of 45 age- and sex-matched controls.

RESULTS: The average FA ratio for patients with Krabbe disease was 0.89 and 0.87 for left and right tracts, respectively (P = .002 and < .001). After adjusting for gestational age, gestational age at birth, birth weight, sex, and race, the 6 patients with Krabbe disease had significantly lower FA values than the controls (P < .001).

CONCLUSIONS: DTI with quantitative tractography detected significant differences in the corticospinal tracts of asymptomatic neonates who had the early-onset form of Krabbe disease. Once standardized and validated, this tool has the potential to be used as a marker of disease progression in neonates diagnosed through statewide neonate screening programs.

  D. L Gibbons , W Lin , C. J Creighton , Z. H Rizvi , P. A Gregory , G. J Goodall , N Thilaganathan , L Du , Y Zhang , A Pertsemlidis and J. M. Kurie

Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here, we address this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. Despite having widespread somatic genetic alterations, the metastasis-prone tumor cells retained a marked plasticity. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in three-dimensional culture that underwent epithelial-to-mesenchymal transition (EMT) following treatment with transforming growth factor-β or injection into syngeneic mice. This transition was entirely dependent on the microRNA (miR)-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize, and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that tumor cell metastasis is regulated by miR-200 expression, which changes in response to contextual extracellular cues.

  J. A Wang , W Lin , T Morris , U Banderali , P. F Juranka and C. E. Morris

During brain trauma, white matter experiences shear and stretch forces that, without severing axons, nevertheless trigger their secondary degeneration. In central nervous system (CNS) trauma models, voltage-gated sodium channel (Nav) blockers are neuroprotective. This, plus the rapid tetrodotoxin-sensitive Ca2+ overload of stretch-traumatized axons, points to "leaky" Nav channels as a pivotal early lesion in brain trauma. Direct effects of mechanical trauma on neuronal Nav channels have not, however, been tested. Here, we monitor immediate responses of recombinant neuronal Nav channels to stretch, using patch-clamp and Na+-dye approaches. Trauma constituted either bleb-inducing aspiration of cell-attached oocyte patches or abrupt uniaxial stretch of cells on an extensible substrate. Nav1.6 channel transient current displayed irreversible hyperpolarizing shifts of steady-state inactivation [availability(V)] and of activation [g(V)] and, thus, of window current. Left shift increased progressively with trauma intensity. For moderately intense patch trauma, a ~20-mV hyperpolarizing shift was registered. Nav1.6 voltage sensors evidently see lower energy barriers posttrauma, probably because of the different bilayer mechanics of blebbed versus intact membrane. Na+ dye-loaded human embryonic kidney (HEK) cells stably transfected with Nav1.6 were subjected to traumatic brain injury-like stretch. Cytoplasmic Na+ levels abruptly increased and the trauma-induced influx had a significant tetrodotoxin-sensitive component. Nav1.6 channel responses to cell and membrane trauma are therefore consistent with the hypothesis that mechanically induced Nav channel leak is a primary lesion in traumatic brain injury. Nav1.6 is the CNS node of Ranvier Nav isoform. When, during head trauma, nodes experienced bleb-inducing membrane damage of varying intensities, nodal Nav1.6 channels should immediately "leak" over a broadly left-smeared window current range.

  K Kurosawa , W Lin and K. Ohta

The class I histone deacetylases HDAC1 and HDAC2 are highly conserved except for their C-terminal domain, but are presumed to have distinct functions in various tissues. We investigated the division of roles between HDAC1 and HDAC2 for the control of transcription and recombination at the immunoglobulin (Ig) gene in DT40. HDAC1–/– knock-out cells showed an increased incidence of gene conversion and of deletion/insertion events at the Ig light chain locus (IgL), but not at the heavy chain locus (IgH). Irrespective of recombinational activity, the transcription levels at IgL and IgH were decreased in HDAC1–/– cells, while other genes actively transcribed in B cells were slightly up-regulated compared to the levels in wild-type cells. These observations were strikingly different from the previously reported effects in HDAC2–/– cells, which showed a significant enhancement of transcriptional and recombinational activities at both IgL and IgH. Swapping experiments of the C-terminal unconserved domain of HDAC2 with its HDAC1 counterpart by gene knock-in demonstrated that this domain was not responsible for the phenotypic differences of HDAC1–/– and HDAC2–/–. This suggests that other features such as modifications in the N-terminal catalytic domain could be important to determine the functional differences of these enzymes despite their structural similarities.

  J. M Hildebrand , Z Luo , M. K Manske , T Price Troska , S. C Ziesmer , W Lin , B. S Hostager , S. L Slager , T. E Witzig , S. M Ansell , J. R Cerhan , G. A Bishop and A. J. Novak

The cytokine B cell activating factor (BAFF) and its receptor, BAFF receptor (BAFF-R), modulate signaling cascades critical for B cell development and survival. We identified a novel mutation in TNFRSF13C, the gene encoding human BAFF-R, that is present in both tumor and germline tissue from a subset of patients with non-Hodgkin lymphoma. This mutation encodes a His159Tyr substitution in the cytoplasmic tail of BAFF-R adjacent to the TRAF3 binding motif. Signaling through this mutant BAFF-R results in increased NF-B1 and NF-B2 activity and increased immunoglobulin production compared with the wild-type (WT) BAFF-R. This correlates with increased TRAF2, TRAF3, and TRAF6 recruitment to His159Tyr BAFF-R. In addition, we document a requirement for TRAF6 in WT BAFF-R signaling. Together, these data identify a novel lymphoma-associated mutation in human BAFF-R that results in NF-B activation and reveals TRAF6 as a necessary component of normal BAFF-R signaling.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility