Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Visit Limsombunchai
Total Records ( 3 ) for Visit Limsombunchai
  Visit Limsombunchai , Christopher Gan and Minsoo Lee
  Loan contracts performance determines the profitability and stability of the financial institutions and screening the loan applications is a key process in minimizing credit risk. Before making any credit decisions, credit analysis (the assessment of the financial history and financial backgrounds of the borrowers) should be completed as part of the screening process. A good credit risk assessment assists financial institutions on loan pricing, determining amount of credit, credit risk management, reduction of default risk and increase in debt repayment. The purpose of this study is to estimate a credit scoring model for the agricultural loans in Thailand. The logistic regression and Artificial Neural Networks (ANN) are used to construct the credit scoring models and to predict the borrower’s creditworthiness and default risk. The results of the logistic regression confirm the importance of total assets value, capital turnover ratio (efficiency) and the duration of bank-borrower relationship as important factors in determining the creditworthiness of the borrowers. The results also show that a higher value of assets implies a higher creditworthiness and a higher probability of a good loan. However, the negative signs found on both capital turnover ratio and the duration of bank-borrower relationship, which contradict with the hypothesized signs, suggest that the borrower who has a longer relationship with the bank and who has a higher gross income to total assets has a higher probability to default on debt repayment.
  Visit Limsombunchai , Christopher Gan and Minsoo Lee
  The objective of this study is to empirically compare the predictive power of the hedonic model with an artificial neural network model on house price prediction. A sample of 200 houses in Christchurch, New Zealand is randomly selected from the Harcourt website. Factors including house size, house age, house type, number of bedrooms, number of bathrooms, number of garages, amenities around the house and geographical location are considered. Empirical results support the potential of artificial neural network on house price prediction, although previous studies have commented on its black box nature and achieved different conclusions.
  Christopher Gan , Visit Limsombunchai , Mike Clemes and Amy Weng
  Conventional econometric models, such as discriminant analysis and logistic regression have been used to predict consumer choice. However, in recent years, there has been a growing interest in applying artificial neural networks (ANN) to analyse consumer behaviour and to model the consumer decision-making process. The purpose of this paper is to empirically compare the predictive power of the probability neural network (PNN), a special class of neural networks and a MLFN with a logistic model on consumers’ choices between electronic banking and non-electronic banking. Data for this analysis was obtained through a mail survey sent to 1,960 New Zealand households. The questionnaire gathered information on the factors consumers’ use to decide between electronic banking versus non-electronic banking. The factors include service quality dimensions, perceived risk factors, user input factors, price factors, service product characteristics and individual factors. In addition, demographic variables including age, gender, marital status, ethnic background, educational qualification, employment, income and area of residence are considered in the analysis. Empirical results showed that both ANN models (MLFN and PNN) exhibit a higher overall percentage correct on consumer choice predictions than the logistic model. Furthermore, the PNN demonstrates to be the best predictive model since it has the highest overall percentage correct and a very low percentage error on both Type I and Type II errors.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility