Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by V. K. Rehan
Total Records ( 9 ) for V. K. Rehan
  C Dasgupta , R Sakurai , Y Wang , P Guo , N Ambalavanan , J. S Torday and V. K. Rehan

Despite tremendous technological and therapeutic advances, bronchopulmonary dysplasia (BPD) remains a leading cause of respiratory morbidity in very low birth weight infants, and there are no effective preventive and/or therapeutic options. We have previously reported that hyperoxia-induced neonatal rat lung injury might be prevented by rosiglitazone (RGZ). Here, we characterize 1) perturbations in wingless/Int (Wnt) and transforming growth factor (TGF)-β signaling, and 2) structural aberrations in lung morphology following 7-day continuous in vivo hyperoxia exposure to neonatal rats. We also tested whether treatment of neonatal pups with RGZ, concomitant to hyperoxia, could prevent such aberrations. Our study revealed that hyperoxia caused significant upregulation of Wnt signaling protein markers lymphoid enhancer factor 1 (Lef-1) and β-catenin and TGF-β pathway transducers phosphorylated Smad3 and Smad7 proteins in whole rat lung extracts. These changes were also accompanied by upregulation of myogenic marker proteins -smooth muscle actin (-SMA) and calponin but significant downregulation of the lipogenic marker peroxisome proliferator-activated receptor- (PPAR) expression. These molecular perturbations were associated with reduction in alveolar septal thickness, radial alveolar count, and larger alveoli in the hyperoxia-exposed lung. These hyperoxia-induced molecular and morphological changes were prevented by systemic administration of RGZ, with lung sections appearing near normal. This is the first evidence that in vivo hyperoxia induces activation of both Wnt and TGF-β signal transduction pathways in lung and of its near complete prevention by RGZ. Hyperoxia-induced arrest in alveolar development, a hallmark of BPD, along with these molecular changes strongly implicates these proteins in hyperoxia-induced lung injury. Administration of PPAR agonists may thus be a potential strategy to attenuate hyperoxia-induced lung injury and subsequent BPD.

  J. S Torday and V. K. Rehan

Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been "deconvoluted" (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the "top-down" conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a "middle-out" cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man.

  J. S Torday and V. K. Rehan

In the postgenomic era, we need an algorithm to readily translate genes into physiologic principles. The failure to advance biomedicine is due to the false hope raised in the wake of the Human Genome Project (HGP) by the promise of systems biology as a ready means of reconstructing physiology from genes. like the atom in physics, the cell, not the gene, is the smallest completely functional unit of biology. Trying to reassemble gene regulatory networks without accounting for this fundamental feature of evolution will result in a genomic atlas, but not an algorithm for functional genomics. For example, the evolution of the lung can be "deconvoluted" by applying cell-cell communication mechanisms to all aspects of lung biology development, homeostasis, and regeneration/repair. Gene regulatory networks common to these processes predict ontogeny, phylogeny, and the disease-related consequences of failed signaling. This algorithm elucidates characteristics of vertebrate physiology as a cascade of emergent and contingent cellular adaptational responses. By reducing complex physiological traits to gene regulatory networks and arranging them hierarchically in a self-organizing map, like the periodic table of elements in physics, the first principles of physiology will emerge.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility