Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by V Positano
Total Records ( 2 ) for V Positano
  P. G Masci , M Marinelli , M Piacenti , V Lorenzoni , V Positano , M Lombardi , A L'Abbate and D. Neglia

Left bundle branch block (LBBB) influences on regional left ventricular (LV) structure, perfusion, and metabolism have not yet been thoroughly investigated in dilated cardiomyopathy patients.

Methods and Results—

Eleven dilated cardiomyopathy patients with LBBB (mean±SD age, 62±11 years; LV ejection fraction, 35±8%) and 7 dilated cardiomyopathy patients without LBBB (mean±SD age, 58±9 years; LV ejection fraction, 37±10%) were studied by cardiac magnetic resonance and positron emission tomography. The left ventricle was divided in 3 regions: septum, adjacent (anterior-inferior walls), and lateral. Regional midwall circumferential strain, maximum shortening, and strain rate were obtained from tagged cardiac magnetic resonance. The systolic stretch index was calculated as positive strain rate (stretching) divided by total strain rate. Myocardial metabolic rate of glucose and resting and hyperemic myocardial blood flow were quantified by 2-[18F]fluoro-2-deoxyglucose and [13N]ammonia positron emission tomography, respectively. Compared with non-LBBB patients, LBBB patients showed a highly inhomogeneous systolic deformation pattern that changed gradually, moving from a discoordinate [(systolic stretch index, 0.485 (0.284)] and poorly contracting (maximum shortening, –1.14±0.96%) septum to a coordinate [systolic stretch index, 0.002 (0.168)] and strongly contracting (maximum shortening, –13.63±2.58%) lateral region (both P<0.0001). This pattern was closely matched to the myocardial metabolic rate of glucose, disclosing lowest, intermediate, and highest values in the septum, adjacent, and lateral regions, respectively (P<0.0001). Septal-to-lateral thickness ratio was lower in LBBB than in non-LBBB patients (P=0.03). In both groups, the LV distribution of resting and hyperemic myocardial blood flow and myocardial blood flow reserve did not differ significantly.


In dilated cardiomyopathy patients, the extensive LV contraction abnormalities induced by LBBB cause regional myocardial metabolic and structural remodeling, without consistent changes in blood flow.

  S. J Peterson , D. H Kim , M Li , V Positano , L Vanella , L. F Rodella , F Piccolomini , N Puri , A Gastaldelli , C Kusmic , A L'Abbate and N. G. Abraham

We examined mechanisms by which L-4F reduces obesity and diabetes in obese (ob) diabetic mice. We hypothesized that L-4F reduces adiposity via increased pAMPK, pAKT, HO-1, and increased insulin receptor phosphorylation in ob mice. Obese and lean mice were divided into five groups: lean, lean-L-4F-treated, ob, ob-L-4F-treated, and ob-L-4F-LY294002. Food intake, insulin, glucose adipocyte stem cells, pAMPK, pAKT, CB1, and insulin receptor phosphorylation were determined. Subcutaneous (SAT) and visceral adipose tissue (VAT) were determined by MRI and hepatic lipid content by magnetic resonance spectroscopy. SAT and VAT volumes decreased in ob-L-4F-treated animals compared with control. L-4F treatment decreased hepatic lipid content and increased the numbers of small adipocytes (P < 0.05) and phosphorylation of insulin receptors. L-4F decreased CB1 in SAT and VAT and increased pAKT and pAMPK in endothelium. L-4F-mediated improvement in endothelium was prevented by LY294002. Inhibition of pAKT and pAMPK by LY294002 was associated with an increase in glucose levels. Upregulation of HO-1 by L-4F produced adipose remodeling and increased the number of small differentiated adipocytes. The anti-obesity effects of L-4F are manifested by a decrease in visceral fat content with reciprocal increases in adiponectin, pAMPK, pAKT, and phosphorylation of insulin receptors with improved insulin sensitivity.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility