Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by V Nizet
Total Records ( 2 ) for V Nizet
  S Weiman , S Dahesh , A. F Carlin , V Nizet and A. L Lewis

Group B Streptococcus (GBS) is an important human pathogen and a model system for studying the roles of bacterial glycosylation in host–microbe interactions. Sialic acid (Sia), expressed prominently in the GBS capsular polysaccharide (CPS), mimics mammalian cell surface Sia and can interact with host Sia-binding proteins to subvert immune clearance mechanisms. Our earlier work has shown that GBS partially O-acetylates CPS Sia residues and employs an intracellular O-acetylation/de-O-acetylation cycle to control the final level of this surface Sia modification. Here, we examine the effects of point mutations in the NeuD O-acetyltransferase and NeuA O-acetylesterase on specific glycosylation phenotypes of GBS, pinpointing an isogenic strain pair that differs dramatically in the degree of the O-acetyl modification (80% versus 5%) while still expressing comparable levels of overall sialylation. Using these strains, higher levels of O-acetylation were found to protect GBS CPS Sia against enzymatic removal by microbial sialidases and to impede engagement of human Siglec-9, but not to significantly alter the ability of GBS to restrict complement C3b deposition on its surface. Additional experiments demonstrated that pH-induced migration of the O-acetyl modification from the 7- to 9-carbon position had a substantial impact on GBS–Siglec-9 interactions, with 7-O-acetylation exhibiting the strongest interference. These studies show that both the degree and position of the GBS O-acetyl modification influence Sia-specific interactions relevant to the host–pathogen relationship. We conclude that native GBS likely expresses a phenotype of intermediate Sia O-acetylation to strike a balance between competing selective pressures present in the host environment.

  R. E Taylor , C. J Gregg , V Padler Karavani , D Ghaderi , H Yu , S Huang , R. U Sorensen , X Chen , J Inostroza , V Nizet and A. Varki

The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc "xeno-autoantibody" response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc. However, dietary Neu5Gc alone cannot elicit anti-Neu5Gc antibodies in mice with a humanlike Neu5Gc deficiency. Other postnatally appearing anti-carbohydrate antibodies are likely induced by bacteria expressing these epitopes; however, no microbe is known to synthesize Neu5Gc. Here, we show that trace exogenous Neu5Gc can be incorporated into cell surface lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensal/pathogen. Indeed, infant anti-Neu5Gc antibodies appear coincident with antibodies against NTHi. Furthermore, NTHi that express Neu5Gc-containing LOS induce anti-Neu5Gc antibodies in Neu5Gc-deficient mice, without added adjuvant. Finally, Neu5Gc from baby food is taken up and expressed by NTHi. As the flora residing in the nasopharynx of infants can be in contact with ingested food, we propose a novel model for how NTHi and dietary Neu5Gc cooperate to generate anti-Neu5Gc antibodies in humans.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility