Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Tohru Kobayashi
Total Records ( 2 ) for Tohru Kobayashi
  Tohru Kobayashi
  To clarify the sexually dimorphic mechanisms of gonadal sex differentiation, we established an in vitro culture system for gonadal sex differentiation using the teleost fish Oreochromis niloticus. In vivo, the entry of germ cells into meiosis occurs around 35 days after hatching (dah) in XX gonads, whereas in XY gonads, meiotic cells became differentiated around 85 dah. In our in vitro culture system using gonads from young fry at 23 dah, the meiotic cells in the XX gonads appeared after 21 days of culture. In contrast, in the XY gonads, no meiotic cells were detected after 21 days. These results indicate that germ cell differentiation in this culture system progresses in a manner similar to that in vivo. To identify the gene products that are involved in the entry of germ cells into meiosis or in the arrest of germ cells at the gonial stage of gonadal sex differentiation, we performed subtractive hybridization screening with this in vitro culture system. From the screening process, we identified the female-related gene, FR-3, which is a homolog of zebrafish nanos-related gene (nos). The nos gene was expressed after gonadal formation around 35 dah in XX gonads, but not in XY gonads. In situ hybridization indicated that nos is expressed in oogenic meiotic cells, but not in spermatogenic meiotic cells. Further examination revealed that nos was expressed in oogenic meiotic cells after gonadal formation, specifically in teleost fish. Together, nos may be also involved in oogenic meiosis, with the exception of primordial germ cell migration.
  Ryosuke Murata , Hirofumi Karimata , Yasuhisa Kobayashi , Ryo Horiguchi , Kazuo Kishimoto , Motofumi Kimura , Tohru Kobayashi , Kiyoshi Soyano and Masaru Nakamura
  To understand the mechanism of sex differentiation in the protogynous Malabar grouper Epinephelus malabaricus, we performed an immunohistochemical investigation of the expression of three steroidogenic enzymes, cholesterol-side-chain-cleavage enzyme (CYP11a), aromatase (CYP19a1a), and cytochrome P45011beta-hydroxylase (CYP11b), in the gonads during ovarian differentiation. Strong positive immunoreactivity against CYP11a, the key enzyme of steroidogenesis, and CYP19a1a which is essential for estrogen (17beta-estradiol) production, appeared first in the somatic cells surrounding gonial germ cells in undifferentiated gonads and throughout ovarian differentiation. However, positive immunoreactivity against CYP11b, which is important for androgen (11-ketotestosterone) production, first appeared in the cluster of somatic cells in the ovary tunica near the dorsal blood vessel after differentiation. CYP19a1a and CYP11b did not co-localize in any cells. These results indicate that there are two types of steroid-producing cells, estrogen-producing cells and androgen-producing cells, in the gonads of this fish, and they are distributed differently, suggesting that these cells are derived from different somatic cells. Estrogen-producing cells appeared prior to ovarian differentiation, while androgen-producing cells were first detected after ovarian differentiation. These results suggest that endogenous estrogen is involved in ovarian differentiation.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility