Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T. Kojima
Total Records ( 2 ) for T. Kojima
  S Kikuchi , T Ninomiya , H Tatsumi , N Sawada and T. Kojima
 

Autotypic tight junctions are formed by tight junction–like structures in three regions of myelinating Schwann cells, the paranodal loops, Schmidt–Lanterman incisures, and outer/inner mesaxons, and various tight junction molecules, including claudin-19 and junctional adhesion molecule (JAM)-C. Our findings demonstrate the identification and subcellular distribution of a novel tricellular tight junction protein, tricellulin (TRIC), in the autotypic tight junctions of mouse myelinating Schwann cells, compared with the autotypic adherens junction protein E-cadherin and the autotypic tight junction protein JAM-C, which are expressed in the paranodal loops, Schmidt–Lanterman incisures, and mesaxons. In real-time RT-PCR, the expression level of TRIC mRNA was about 10-fold higher in the sciatic nerve than in the spinal cord or cerebrum. In immunostaining, TRIC signals were completely restricted to the peripheral nervous system (PNS) and strongly concentrated at the paranodal loops, Schmidt–Lanterman incisures, and mesaxons of myelinating Schwann cells. In addition, TRIC was expressed in the thin region of the paranode and there was a gap between TRIC and the Na+ channel. Furthermore, TRIC was more distally located from the node than E-cadherin and was colocalized with JAM-C. It is possible that TRIC may be a component to maintain the integrity for PNS myelin function and morphology. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 58:1067–1073, 2010)

  K. Ishii , H. Kataoka and T. Kojima
  The initiation and propagation of detonation waves in combustible high speed flows were studied experimentally. A planar detonation wave traveling in an initiation tube was transmitted into a test section where a combustible high speed flow was induced by an incident shock wave generated in a shock tube. In this study, the flow Mach numbers were obtained as 0.9 and 1.2. The experimental results show that depending on the flow velocity, the apparent propagation velocity of a detonation wave is higher in the upstream and lower in the downstream direction than the CJ velocity. Smoked plate records reveal cellular patterns deformed in the flow direction, and the calculated aspect ratios of the cell were found to agree well with the experimental ones on the basis of the assumption that the velocity of the transverse wave is not affected by the flowing mixture. By analyzing the shock-wave diffraction at the position where there is an abrupt change in the area, on the basis of Whitham’s theory, it was deduced that in the present experimental set-up, the detonation was initiated by the reflection of the diffracted shock waves on the sidewalls of the test section. The agreement between the experimental and calculated results regarding the position of the cellular patterns on the smoked plate record indicated that the position of detonation initiation in high speed flows is shifted downstream due to the flow velocity.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility