Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T. Horie
Total Records ( 4 ) for T. Horie
  Y Shitara , Y Nagamatsu , S Wada , Y Sugiyama and T. Horie
 

Cyclosporin A (CsA) is a well known inhibitor of the organic anion-transporting polypeptide (OATP/Oatp) family transporters, causing a large number of transporter-mediated drug-drug interactions in clinical situations. In the present study, we examined the inhibitory effect of CsA on the hepatic uptake of sulfobromophthalein (BSP) in rats, focusing on a long-lasting inhibition. Twenty-one hours after the subcutaneous administration of CsA, the hepatic clearance of BSP was decreased. The liver uptake index study revealed that hepatic uptake of BSP was reduced in CsA-treated rats for at least 3 days. Comparison of uptake studies using isolated hepatocytes prepared from control and CsA-treated rats showed that hepatic uptake in CsA-treated rats was decreased. In primary cultured hepatocytes, after preincubation with CsA, the uptake of [3H]BSP was reduced even after removal of CsA from the incubation buffer although a preincubation time dependence was not observed. However, the expression of Oatp1a1 and Oatp1b2, which are involved in the hepatic uptake of BSP, and the amount of intrahepatic glutathione, a driving force of Oatp1a1, did not change in CsA-treated rats. Thus, we can conclude that CsA modulates the transporter function sustainably. It can cause a potent in vivo drug-drug interaction. The modulation of transporters is not caused by reduced expression or driving force of transporters. It may be affected by CsA accumulated in the liver or its metabolites. The inhibitory effect of CsA on the transporter-mediated uptake of BSP cannot be explained by a simple competitive mechanism and a novel mechanism should be considered.

  T Nakano , S Sekine , K Ito and T. Horie
 

The multidrug resistance-associated protein 2/ATP-binding cassette transporter family C2 (Mrp2/Abcc2) is an ATP-dependent export pump that mediates the transport of a variety of organic anions. Abcc2 is mainly expressed on the canalicular membrane of hepatocytes and also the brush-border membrane of intestinal epithelial cells. We have previously reported that Abcc2 is rapidly internalized from the canalicular membrane during acute oxidative stress, which induces protein kinase C (PKC) activation in rat liver. However, it has not been elucidated whether PKC is involved in the regulation of Abcc2 localization in other tissues. In this study, we investigated this issue in rat intestinal epithelia. Exposure to thymeleatoxin, a conventional PKC (cPKC) activator, for 20 min reduced the cumulative glutathione S-bimane efflux for 40 min via Abcc2 from 30.3 ± 2.1 nmol/cm to 18.1 ± 1.6 nmol/cm. Likewise, the Abcc2 expression in the brush-border membrane of the small intestine was reduced to half that of the control without changing the total amount of Abcc2 present in the homogenate. Immunoprecipitation analysis suggested an interaction between Abcc2 and ezrin, a scaffolding protein that is dominantly expressed in the intestine. Thymeleatoxin treatment decreased the amount of the active form (C-terminally phosphorylated form) of ezrin and the amount of Abcc2 that coimmunoprecipitated with ezrin. These results indicate that cPKC activation diminishes the protein-protein interaction between ezrin and Abcc2. In conclusion, the phosphorylation status of ezrin correlates with the cell surface expression of Abcc2 in the rat small intestine, which may be regulated by cPKC.

  Y Shitara , Y Nagamatsu , S Wada , Y Sugiyama and T. Horie
 

Cyclosporin A (CsA) is a well known inhibitor of the organic anion-transporting polypeptide (OATP/Oatp) family transporters, causing a large number of transporter-mediated drug-drug interactions in clinical situations. In the present study, we examined the inhibitory effect of CsA on the hepatic uptake of sulfobromophthalein (BSP) in rats, focusing on a long-lasting inhibition. Twenty-one hours after the subcutaneous administration of CsA, the hepatic clearance of BSP was decreased. The liver uptake index study revealed that hepatic uptake of BSP was reduced in CsA-treated rats for at least 3 days. Comparison of uptake studies using isolated hepatocytes prepared from control and CsA-treated rats showed that hepatic uptake in CsA-treated rats was decreased. In primary cultured hepatocytes, after preincubation with CsA, the uptake of [3H]BSP was reduced even after removal of CsA from the incubation buffer although a preincubation time dependence was not observed. However, the expression of Oatp1a1 and Oatp1b2, which are involved in the hepatic uptake of BSP, and the amount of intrahepatic glutathione, a driving force of Oatp1a1, did not change in CsA-treated rats. Thus, we can conclude that CsA modulates the transporter function sustainably. It can cause a potent in vivo drug-drug interaction. The modulation of transporters is not caused by reduced expression or driving force of transporters. It may be affected by CsA accumulated in the liver or its metabolites. The inhibitory effect of CsA on the transporter-mediated uptake of BSP cannot be explained by a simple competitive mechanism and a novel mechanism should be considered.

  T Nakano , S Sekine , K Ito and T. Horie
 

The multidrug resistance-associated protein 2/ATP-binding cassette transporter family C2 (Mrp2/Abcc2) is an ATP-dependent export pump that mediates the transport of a variety of organic anions. Abcc2 is mainly expressed on the canalicular membrane of hepatocytes and also the brush-border membrane of intestinal epithelial cells. We have previously reported that Abcc2 is rapidly internalized from the canalicular membrane during acute oxidative stress, which induces protein kinase C (PKC) activation in rat liver. However, it has not been elucidated whether PKC is involved in the regulation of Abcc2 localization in other tissues. In this study, we investigated this issue in rat intestinal epithelia. Exposure to thymeleatoxin, a conventional PKC (cPKC) activator, for 20 min reduced the cumulative glutathione S-bimane efflux for 40 min via Abcc2 from 30.3 ± 2.1 nmol/cm to 18.1 ± 1.6 nmol/cm. Likewise, the Abcc2 expression in the brush-border membrane of the small intestine was reduced to half that of the control without changing the total amount of Abcc2 present in the homogenate. Immunoprecipitation analysis suggested an interaction between Abcc2 and ezrin, a scaffolding protein that is dominantly expressed in the intestine. Thymeleatoxin treatment decreased the amount of the active form (C-terminally phosphorylated form) of ezrin and the amount of Abcc2 that coimmunoprecipitated with ezrin. These results indicate that cPKC activation diminishes the protein-protein interaction between ezrin and Abcc2. In conclusion, the phosphorylation status of ezrin correlates with the cell surface expression of Abcc2 in the rat small intestine, which may be regulated by cPKC.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility