Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by T. J Hawke
Total Records ( 2 ) for T. J Hawke
  M. P Gaidhu , N. M Anthony , P Patel , T. J Hawke and R. B. Ceddia

This study investigated the molecular mechanisms by which a high-fat diet (HFD) dysregulates lipolysis and lipid metabolism in mouse epididymal (visceral, VC) and inguinal (subcutaneous, SC) adipocytes. Eight-weeks of HFD feeding increased adipose triglyceride lipase (ATGL) content and comparative gene identification-58 (CGI-58) expression, whereas hormone-sensitive lipase (HSL) phosphorylation and perilipin content were severely reduced. Adipocytes from HFD mice elicited increased basal but blunted epinephrine-stimulated lipolysis and increased diacylglycerol content in both fat depots. Consistent with impaired adrenergic receptor signaling, HFD also increased adipose-specific phospholipase A2 expression in both fat depots. Inhibition of E-prostanoid 3 receptor increased basal lipolysis in control adipocytes but failed to acutely alter the effects of HFD on lipolysis in both fat depots. In HFD visceral adipocytes, activation of adenylyl cyclases by forskolin increased HSL phosphorylation and surpassed the lipolytic response of control cells. However, in HFD subcutaneous adipocytes, forskolin induced lipolysis without detectable HSL phosphorylation, suggesting activation of an alternative lipase in response to HFD-induced suppression of HSL in VC and SC adipocytes. HFD also powerfully inhibited basal, epinephrine-, and forskolin-induced AMP kinase (AMPK) activation as well peroxisome proliferator-activated receptor gamma coactivator-1 expression, citrate synthase activity, and palmitate oxidation in both fat depots. In summary, novel evidence is provided that defective adrenergic receptor signaling combined with upregulation of ATGL and suppression of HSL and AMPK signaling mediate HFD-induced alterations in lipolysis and lipid utilization in VC and SC adipocytes, which may play an important role in defective lipid mobilization and metabolism seen in diet-induced obesity.

  C Liu , R. P Gersch , T. J Hawke and M. Hadjiargyrou

Mustn1 (Mustang, musculoskeletal temporally activated novel gene) was originally identified in fracture callus tissue, but its greatest expression is detected in skeletal muscle. Thus, we conducted experiments to investigate the expression and function of Mustn1 during myogenesis. Temporally, quantitative real-time PCR analysis of muscle samples from embryonic day 17 to 12 mo of age reveals that Mustn1 mRNA expression is greatest at 3 mo of age and beyond, consistent with the expression pattern of Myod. In situ hybridization shows abundant Mustn1 expression in somites and developing skeletal muscles, while in adult muscle, Mustn1 is localized to some peripherally located nuclei. Using RNA interference (RNAi), we investigated the function of Mustn1 in C2C12 myoblasts. Though silencing Mustn1 mRNA had no effect on myoblast proliferation, it did significantly impair myoblast differentiation, preventing myofusion. Specifically, when placed in low-serum medium for up to 6 days, Mustn1-silenced myoblasts elongated poorly and were mononucleated. In contrast, control RNAi-treated and parental myoblasts presented as large, multinucleated myotubes. Further supporting the morphological observations, immunocytochemistry of Mustn1-silenced cells demonstrated significant reductions in myogenin (Myog) and myosin heavy chain (Myhc) expression at 4 and 6 days of differentiation as compared with control and parental cells. The decreases in Myog and Myhc protein expression in Mustn1-silenced cells were associated with robust (~3-fold or greater) decreases in the expression of Myod and desmin (Des), as well as the myofusion markers calpain 1 (Capn1), caveolin 3 (Cav3), and cadherin 15 (M-cadherin; Cadh15). Overall, we demonstrate that Mustn1 is an essential regulator of myogenic differentiation and myofusion, and our findings implicate Myod and Myog as its downstream targets.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility