Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T Zou
Total Records ( 2 ) for T Zou
  T Zou , W Yang , Z Hou and J. Yang
 

Elevation of blood homocysteine levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. One of the mechanisms by which homocysteine induces atherosclerosis is to promote the proliferation of vascular smooth muscle cells (VSMCs) in a reactive oxygen species (ROS)-dependent manner. It has been shown that homocysteine induces the production of ROS through the activation of NAD(P)H oxidases in VSMCs. In this study, we investigated the signal transduction pathways involved in the activation of NAD(P)H oxidases. Homocysteine promoted DNA synthesis in VSMCs. Inhibition of ROS by N-acetyl-l-cysteine (an antioxidant) and apocynin (an inhibitor of NAD(P)H oxidases) significantly blocked homocysteine-induced proliferation in VSMCs. Homocysteine induced a rapid increase in the phosphorylation of p38-mitogen-activated protein kinase (p38 MAPK). p38 MAPK in turn activated NAD(P)H oxidases by inducing the phosphorylation of p47phox, resulting in the generation of ROS. ROS induced the phosphorylation of Akt, which was probably responsible for proliferation in VSMCs. These findings demonstrate that homocysteine induces an increase in the activity of NAD(P)H oxidases in VSMCs by activating p38 MAPK and enhancing the phosphorylation of p47phox.

  L Xiao , J. N Rao , T Zou , L Liu , T. X Yu , X. Y Zhu , J. M Donahue and J. Y. Wang
 

Intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis is tightly regulated by numerous factors including polyamines. Decreased levels of cellular polyamines increase activating transcription factor (ATF)-2, but the exact role and mechanism of induced ATF-2 in the regulation of intestinal epithelial cell (IEC) growth remain elusive. Cyclin-dependent kinase (CDK) 4 is necessary for the G1-to-S phase transition during the cell cycle, and its expression is predominantly controlled at the transcription level. Here, we reported that induced ATF-2 following polyamine depletion repressed CDK4 gene transcription in IECs by increasing formation of the ATF-2/JunD heterodimers. ATF-2 formed complexes with JunD as measured by immunoprecipitation using the ATF-2 and JunD antibodies and by glutathione S-transferase (GST) pull-down assays using GST-ATF-2 fusion proteins. Studies using various mutants of GST-ATF-2 revealed that formation of the ATF-2/JunD dimers depended on the COOH-terminal basic region-leucine zipper domain of ATF-2. Polyamine depletion increased ATF-2/JunD complex and inhibited CDK4 transcription as indicated by a decrease in the levels of CDK4-promoter activity and its mRNA. ATF-2 silencing not only prevented inhibition of CDK4 transcription in polyamine-deficient cells but also abolished repression of CDK4 expression induced by ectopic JunD overexpression. ATF-2 silencing also promoted IEC growth in polyamine-depleted cells. These results indicate that induced ATF-2/JunD association following polyamine depletion represses CDK4 transcription, thus contributing to the inhibition of IEC growth.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility