Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T Wang
Total Records ( 10 ) for T Wang
  W Yuan , J Guo , X Li , Z Zou , G Chen , J Sun , T Wang and D. Lu
 

It has been reported that phospholipase C-1 (PLC-1) plays an important protective role in hydrogen peroxide (H2O2)-induced pheochromocytoma (PC) 12 cells death. However, most studies have used high doses of H2O2 and the downstream targets of PLC-1 activation remain to be identified. The present study was designed to examine the roles of PLC-1 signaling pathway in the apoptosis of PC12 cells induced by low dose of H2O2, as well as the downstream factors involved in this pathway. Low-dose treatment of H2O2 resulted in PLC-1 tyrosine phosphorylation in a time-dependent manner and H2O2 killed the PC12 cells by inducing necrosis. In contrast, pretreatment of PC12 cells with U73122, a specific inhibitor of PLC, markedly increased the percentage of dead cells. The mode of cell death was converted to apoptosis as determined by Hoechst/PI nuclear staining and fluorescence microscopy. Western blot analysis demonstrated that the expression of Bcl-2 protein and the activation of pro-caspase-3 were not significantly affected by low dose of H2O2 alone. However, after pretreatment with U73122, Bcl-2 protein expression was dramatically decreased and the activation of pro-caspase-3 was significantly increased. We concluded that PLC-1 plays an important protective role in H2O2-induced PC12 cells death. Bcl-2 and caspase-3 probably participate in the signaling pathway as downstream factors.

  L Zhu , T Wang and L. Ferre
 

In the context of sufficient dimension reduction, the goal is to parsimoniously recover the central subspace of a regression model. Many inverse regression methods use slicing estimation to recover the central subspace. The efficacy of slicing estimation depends heavily upon the number of slices. However, the selection of the number of slices is an open and long-standing problem. In this paper, we propose a discretization-expectation estimation method, which avoids selecting the number of slices, while preserving the integrity of the central subspace. This generic method assures root-n consistency and asymptotic normality of slicing estimators for many inverse regression methods, and can be applied to regressions with multivariate responses. A BIC-type criterion for the dimension of the central subspace is proposed. Comprehensive simulations and an illustrative application show that our method compares favourably with existing estimators.

  P Sun , Y Qiu , Z Zhang , J Wan , T Wang , X Jin , Q Lan , N Rothman and Z. l. Xia
 

DNA damage induced by benzene reactive metabolites is thought of as an important mechanism underlying benzene hematotoxicity and genotoxicity, and genetic variation in cell-cycle control genes may contribute to susceptibility to chronic benzene poisoning (CBP). Using a case-control study that included 307 benzene-poisoned patients and 299 workers occupationally exposed to benzene in south China, we aimed to investigate the association between genetic polymorphisms of p53 and p21 and the odds of CBP. To investigate whether benzene exposure may influence mRNA expression of p53 and p21 in benzene-exposed workers, we also chose 39 CBP workers, 38 occupationally benzene-exposure workers, and 37 nonexposure workers in the same region of China. PCR-restriction fragment length polymorphism technique was applied to detect polymorphisms of p53 (rs17878362, rs1042522, and rs1625895) and p21 (rs1801270 and rs1059234), and real-time PCR was applied to detect the quantity of gene mRNA expression. We found that p21 C98A variant genotypes (CA+AA) or C70T variant genotypes (CT+TT) were associated with decreased odds of CBP [odds ratio (OR), 0.51; 95% confidence interval (95% CI), 0.32-0.83, and OR, 0.53; 95% CI, 0.29-0.95, respectively. Further analysis showed the decreased odds of CBP in the subjects with p21 CC/AT diplotype (OR, 0.51; 95% CI, 0.30-0.85). In addition, p53 mRNA expression of CBP workers or benzene-exposure workers was significantly lower than that of nonexposure workers. Although these results require confirmation and extension, our results show that polymorphisms in p21 may be protective against the risk of CBP in the Chinese occupational population. (Cancer Epidemiol Biomarkers Prev 2009;18(6):1821–8)

  J Xu , F. A Ismat , T Wang , M. M Lu , N Antonucci and J. A. Epstein
 

Rationale: Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder with a broad array of clinical manifestations, including benign and malignant tumors, and characteristic cutaneous findings. NF1 patients also have an increased incidence of cardiovascular diseases, including obstructive vascular disorders and hypertension. The disease gene, NF1, encodes neurofibromin, a ubiquitously expressed protein that acts, in part, as a Ras-GAP (GTP-ase activating protein), downregulating the activity of activated Ras protooncogenes. In animal models, endothelial and smooth muscle expression of the disease gene is critical for normal heart development and the prevention of vascular disease, respectively.

Objective: To determine the role of NF1 in the postnatal and adult heart.

Methods and Results: We generated mice with homozygous loss of the murine homolog Nf1 in myocardium (Nf1mKO) and evaluated their hearts for biochemical, structural, and functional changes. Nf1mKO mice have normal embryonic cardiovascular development but have marked cardiac hypertrophy, progressive cardiomyopathy, and fibrosis in the adult. Hyperactivation of Ras and downstream pathways are seen in the heart with the loss of Nf1, along with activation of a fetal gene program.

Conclusions: This report describes a critical role of Nf1 in the regulation of cardiac growth and function. Activation of pathways known to be involved in cardiac hypertrophy and dysfunction are seen with the loss of myocardial neurofibromin.

  D. E Sosnovik , R Wang , G Dai , T Wang , E Aikawa , M Novikov , A Rosenzweig , R. J Gilbert and V. J. Wedeen
 

Background— Changes in myocardial microstructure are important components of the tissue response to infarction but are difficult to resolve with current imaging techniques. A novel technique, diffusion spectrum MRI tractography (DSI tractography), was thus used to image myofiber architecture in normal and infarcted myocardium. Unlike diffusion tensor imaging, DSI tractography resolves multiple myofiber populations per voxel, thus generating accurate 3D tractograms, which we present in the myocardium for the first time.

Methods and Results— DSI tractography was performed at 4.7 T in excised rat hearts 3 weeks after left coronary artery ligation (n=4) and in 4 age-matched controls. Fiber architecture in the control hearts varied smoothly from endocardium to epicardium, producing a symmetrical array of crossing helical structures in which orthogonal myofibers were separated by fibers with intermediate helix angles. Fiber architecture in the infarcted hearts was severely perturbed. The infarct boundary in all cases was highly irregular and punctuated repeatedly by residual myofibers extending from within the infarct to the border zones. In all infarcts, longitudinal myofibers extending toward the basal-anterior wall and transversely oriented myofibers extending toward the septum lay in direct contact with each other, forming nodes of orthogonal myofiber intersection or contact.

Conclusions— DSI tractography resolves 3D myofiber architecture and reveals a complex network of orthogonal myofibers within infarcted myocardium. Meshlike networks of orthogonal myofibers in infarcted myocardium may resist mechanical remodeling but also probably increase the risk for lethal reentrant arrhythmias. DSI tractography thus provides a new and important readout of tissue injury after myocardial infarction.

  Y Dou , E Balse , A Dehghani Zadeh , T Wang , C. L Goonasekara , G. P Noble , J Eldstrom , D. F Steele , S. N Hatem and D. Fedida
 

The transfection of cardiac myocytes is difficult, and so most of the data regarding the regulation of trafficking and targeting of cardiac ion channels have been obtained using heterologous expression systems. Here we apply the fast biolistic transfection procedure to adult cardiomyocytes to show that biolistically introduced exogenous voltage-gated potassium channel, Kv1.5, is functional and, like endogenous Kv1.5, localizes to the intercalated disc, where it is expressed at the surface of that structure. Transfection efficiency averages 28.2 ± 5.7% of surviving myocytes at 24 h postbombardment. Ventricular myocytes transfected with a tagged Kv1.5 exhibit an increased sustained current component that is ~40% sensitive to 100 µM 4-aminopyridine and which is absent in myocytes transfected with a fluorescent protein-encoding construct alone. Kv1.5 deletion mutations known to reduce the surface expression of the channel in heterologous cells similarly reduce the surface expression in transfected ventricular myocytes, although targeting to the intercalated disc per se is generally unaffected by both NH2- and COOH-terminal deletion mutants. Expressed current levels in wild-type Kv1.5, Kv1.5SH3(1), Kv1.5N209, and Kv1.5N135 mutants were well correlated with apparent surface expression of the channel at the intercalated disc. Our results conclusively demonstrate functionality of channels present at the intercalated disc in native myocytes and identify determinants of trafficking and surface targeting in intact cells. Clearly, biolistic transfection of adult cardiac myocytes will be a valuable method to study the regulation of surface expression of channels in their native environment.

  T Wang , G Hou , Y Wang and L. Xue
 

Although interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) are implicated in various nuclear functions, the understanding of the regulatory mechanism of MARs is still poor. A few MAR-binding proteins (MARBP) have been isolated from some plants and animals, but not from the unicellular algae. Here, we identify a novel MAR-binding protein, namely DMBP-1, from the halotolerant alga Dunaliella salina. The cDNA of DMBP-1 is 2322-bp long and contains a 1626 bp of an open reading frame encoding a polypeptide of 542 amino acids (59 kDa). The DMBP-1 expressed in Escherichia coli specifically binds A/T-rich MAR DNA. The DMBP-1 fused to green fluorescent protein appears only inside the nuclei of Chinese hamster ovarian cells transfected with the pEGFP–MBP, indicating that the protein is located in the nuclei. The findings mentioned above may contribute to better understanding of the nuclear matrix–MAR interactions.

  T Wang , U Lao and B. A. Edgar
 

Autophagy can help cells to dispose of damaged proteins, alleviating cell death in genetic models of Huntington’s disease and retinal degradation.

  D. J Westcott , J. B DelProposto , L. M Geletka , T Wang , K Singer , A. R Saltiel and C. N. Lumeng
 

Adipose tissue macrophages (ATMs) play a critical role in obesity-induced inflammation and insulin resistance. Distinct subtypes of ATMs have been identified that differentially express macrophage galactose-type C-type lectin 1 (MGL1/CD301), a marker of alternatively activated macrophages. To evaluate if MGL1 is required for the anti-inflammatory function of resident (type 2) MGL1+ ATMs, we examined the effects of diet-induced obesity (DIO) on inflammation and metabolism in Mgl1–/– mice. We found that Mgl1 is not required for the trafficking of type 2 ATMs to adipose tissue. Surprisingly, obese Mgl1–/– mice were protected from glucose intolerance, insulin resistance, and steatosis despite having more visceral fat. This protection was caused by a significant decrease in inflammatory (type 1) CD11c+ ATMs in the visceral adipose tissue of Mgl1–/– mice. MGL1 was expressed specifically in 7/4hi inflammatory monocytes in the blood and obese Mgl1–/– mice had lower levels of 7/4hi monocytes. Mgl1–/– monocytes had decreased half-life after adoptive transfer and demonstrated decreased adhesion to adipocytes indicating a role for MGL1 in the regulation of monocyte function. This study identifies MGL1 as a novel regulator of inflammatory monocyte trafficking to adipose tissue in response to DIO.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility