Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by T Taniguchi
Total Records ( 6 ) for T Taniguchi
  K Kawaguchi , H Murakami , T Taniguchi , M Fujii , S Kawata , T Fukui , Y Kondo , H Osada , N Usami , K Yokoi , Y Ueda , Y Yatabe , M Ito , Y Horio , T Hida and Y. Sekido

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm associated with asbestos exposure. Although expression and activation of receptor tyrosine kinases (RTKs), including MET, have been reported in most MPM, specific RTK inhibitors showed less than the expected response in MPM cells. To determine whether the lack of response of MET inhibitors was due to cooperation with other RTKs, we determined activation status of MET and other RTKs, including epidermal growth factor receptor (EGFR) family of 20 MPM cell lines, and tested whether dual RTK inhibition is an effective therapeutic strategy. We detected MET upregulation and phosphorylation (thus indicating activation) in 14 (70%) and 13 (65%) cell lines, but treatment with MET-specific inhibitors showed weak or modest effect of suppression in most of the cell lines. Phospho-RTK array analysis revealed that MET was simultaneously activated with other RTKs, including EGFR, ErbB2, ErbB3 and platelet-derived growth factor receptor-β. Combination of MET and EGFR inhibitors triggered stronger inhibition on cell proliferation and invasion of MPM cells than that of each in vitro. These results indicated that coactivation of RTKs was essential in mesothelioma cell proliferation and/or survival, thus suggesting that simultaneous inhibition of RTKs may be a more effective strategy for the development of molecular target therapy for MPM.

  M. J Lace , J. R Anson , A. J Klingelhutz , H Harada , T Taniguchi , A. D Bossler , T. H Haugen and L. P. Turek

Interferons (IFNs) have been used to treat mucosal lesions caused by human papillomavirus (HPV) infection, such as intraepithelial precursor lesions to cancer of the uterine cervix, genital warts or recurrent respiratory papillomatosis, to potentially reduce or eliminate replicating HPV plasmid genomes. Mucosal HPVs have evolved mechanisms that impede IFN-β synthesis and downregulate genes induced by IFN. Here we show that these HPV types directly subvert a cellular transcriptional response to IFN-β as a potential boost in infection. Treatment with low levels of human IFN-β induced initial amplification of HPV-16 and HPV-11 plasmid genomes and increased HPV-16 or HPV-31 DNA copy numbers up to 6-fold in HPV-immortalized keratinocytes. IFN treatment also increased early gene transcription from the major early gene promoters in HPV-16, HPV-31 and HPV-11. Furthermore, mutagenesis of the viral genomes and ectopic interferon regulatory factor (IRF) expression in transfection experiments using IRF-1–/–, IRF-2–/– and dual knockout cell lines determined that these responses are due to the activation of IRF-1 interaction with a conserved interferon response element demonstrated in several mucosal HPV early gene promoters. Our results provide a molecular explanation for the varying clinical outcomes of IFN therapy of papillomatoses and define an assay for the modulation of the HPV gene program by IFNs as well as other cytokines and signaling molecules in infection and therapy.

  K Oda , S Makino , C Masuda , T Yoshiki , Y Kitamura , K Takata , D Yanagisawa , T Taniguchi and I. Tooyama

The putative protein C7orf24 is encoded by Homo sapiens chromosome 7 open reading frame 24. C7orf24 was first identified as a 21-kDa cytochrome c–releasing factor detected in the cytosolic fraction of human leukemia U937 cells after treatment with geranylgeraniol. C7orf24 protein was recently identified as a -glutamyl cyclotransferase, an enzyme in the -glutamyl cycle. However, the exact localization of C7orf24 mRNA in normal tissues remains unknown. The present study examined the distribution pattern of C7orf24 mRNA in rat tissues using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization histochemistry. The RT-PCR experiments demonstrated that C7orf24 and a variant C7orf24 mRNA were expressed in various tissues. Quantitative RT-PCR analysis revealed significantly high levels of both C7orf24 mRNAs in the liver and kidney, compared with other tissues examined. In situ hybridization histochemistry localized C7orf24 mRNA to hepatocytes in the liver and renal tubules in the kidney. The present results thus implicated an important role for C7orf24 in liver and kidney. This manuscript contains online supplemental material at Please visit this article online to view these materials. (J Histochem Cytochem 57:1121–1126, 2009)

  K Baba , Y. W Park , T Kaku , R Kaida , M Takeuchi , M Yoshida , Y Hosoo , Y Ojio , T Okuyama , T Taniguchi , Y Ohmiya , T Kondo , Z Shani , O Shoseyov , T Awano , S Serada , N Norioka , S Norioka and T. Hayashi

In response to environmental variation, angiosperm trees bend their stems by forming tension wood, which consists of a cellulose-rich G (gelatinous)-layer in the walls of fiber cells and generates abnormal tensile stress in the secondary xylem. We produced transgenic poplar plants overexpressing several endoglycanases to reduce each specific polysaccharide in the cell wall, as the secondary xylem consists of primary and secondary wall layers. When placed horizontally, the basal regions of stems of transgenic poplars overexpressing xyloglucanase alone could not bend upward due to low strain in the tension side of the xylem. In the wild-type plants, xyloglucan was found in the inner surface of G-layers during multiple layering. In situ xyloglucan endotransglucosylase (XET) activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, began at the inner surface layers S1 and S2 and was retained throughout G-layer development, while the incorporation of xyloglucan heptasaccharide (XXXG) for wall loosening occurred in the primary wall of the expanding zone. We propose that the xyloglucan network is reinforced by XET to form a further connection between wall-bound and secreted xyloglucans in order to withstand the tensile stress created within the cellulose G-layer microfibrils.

  C Nishiura , K Takeuchi , K Minoura , M Sumida , T Taniguchi , K Tomoo and T. Ishida

The inhibition of tau fibrillation is a potential therapeutic target for Alzheimer’s and other neurodegenerative diseases. As a series of studies on inhibiting the transition of soluble monomeric tau into mature fibril, the effect of Tyr310 residue in the third repeat (R3) of the microtubule-binding domain (MBD) on the assembly of MBD was investigated using Tyr-substituted MBD mutants by fluorescence, circular dichroism spectroscopy and electron microscopy. Consequently, the importance of the Tyr residue located at position 310, not at other positions, was clearly shown. The conformational comparison of the Tyr310Ala-substituted R3 repeat peptide with the unsubstituted one showed that the Tyr residue contributes to the rigid extended structure of the N-terminal V306QIVYK311 sequence, and its replacement by Ala leads to the deformation of the extended structure, consequently losing its aggregation ability. The present results indicate that a compound that interacts specifically with the Tyr residue or an antibody recognizing the region containing the Tyr residue becomes a candidate for inhibiting tau fibrillation.

  T Ebihara , M Azuma , H Oshiumi , J Kasamatsu , K Iwabuchi , K Matsumoto , H Saito , T Taniguchi , M Matsumoto and T. Seya

In myeloid dendritic cells (mDCs), TLR3 is expressed in the endosomal membrane and interacts with the adaptor toll/interleukin 1 receptor homology domain–containing adaptor molecule 1 (TICAM-1; TRIF). TICAM-1 signals culminate in interferon (IFN) regulatory factor (IRF) 3 activation. Co-culture of mDC pretreated with the TLR3 ligand polyI:C and natural killer (NK) cells resulted in NK cell activation. This activation was triggered by cell-to-cell contact but not cytokines. Using expression profiling and gain/loss-of-function analyses of mDC genes, we tried to identify a TICAM-1–inducing membrane protein that participates in mDC-mediated NK activation. Of the nine candidates screened, one contained a tetraspanin-like sequence and satisfied the screening criteria. The protein, referred to as IRF-3–dependent NK-activating molecule (INAM), functioned in both the mDC and NK cell to facilitate NK activation. In the mDC, TICAM-1, IFN promoter stimulator 1, and IRF-3, but not IRF-7, were required for mDC-mediated NK activation. INAM was minimally expressed on NK cells, was up-regulated in response to polyI:C, and contributed to mDC–NK reciprocal activation via its cytoplasmic tail, which was crucial for the activation signal in NK cells. Adoptive transfer of INAM-expressing mDCs into mice implanted with NK-sensitive tumors caused NK-mediated tumor regression. We identify a new pathway for mDC–NK contact-mediated NK activation that is governed by a TLR signal-derived membrane molecule.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility