Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T Narita
Total Records ( 15 ) for T Narita
  K Satoh , M Matsuki Fukushima , B Qi , M. Y Guo , T Narita , J Fujita Yoshigaki and H. Sugiya
 

Myristoylated alanine-rich C kinase substrate (MARCKS) is known as a major cellular substrate for protein kinase C (PKC). MARCKS has been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as phagocytosis, endocytosis, and exocytosis. The involvement of MARCKS phosphorylation in secretory function has been reported in Ca2+-mediated exocytosis. In rat parotid acinar cells, the activation of β-adrenergic receptors provokes exocytotic amylase release via accumulation of intracellular cAMP levels. Here, we studied the involvement of MARCKS phosphorylation in the cAMP-dependent amylase release in rat parotid acinar cells. MARCKS protein was detected in rat parotid acinar cells by Western blotting. The β-adrenergic agonist isoproterenol (IPR) induced MARCKS phosphorylation in a time-dependent manner. Translocation of a part of phosphorylated MARCKS from the membrane to the cytosol and enhancement of MARCKS phosphorylation at the apical membrane site induced by IPR were observed by immunohistochemistry. H89, a cAMP-dependent protein kinase (PKA) inhibitor, inhibited the IPR-induced MARCKS phosphorylation. The PKC inhibitor rottlerin inhibited the IPR-induced MARCKS phosphorylation and amylase release. IPR activated PKC, and the effects of IPR were inhibited by the PKA inhibitors. A MARCKS-related peptide partially inhibited the IPR-induced amylase release. These findings suggest that MARCKS phosphorylation via the activation of PKC, which is downstream of PKA activation, is involved in the cAMP-dependent amylase release in parotid acinar cells.

  K Kinouchi , A Ichihara , M Sano , G. H Sun Wada , Y Wada , A Kurauchi Mito , K Bokuda , T Narita , Y Oshima , M Sakoda , Y Tamai , H Sato , K Fukuda and H. Itoh
 

Rationale: The (pro)renin receptor [(P)RR], encoded in ATP6AP2, plays a key role in the activation of local renin-angiotensin system (RAS). A truncated form of (P)RR, termed M8.9, was also found to be associated with the vacuolar H+-ATPase (V-ATPase), implicating a non–RAS-related function of ATP6AP2.

Objective: We investigated the role of (P)RR/ATP6AP2 in murine cardiomyocytes.

Methods and Results: Cardiomyocyte-specific ablation of Atp6ap2 resulted in lethal heart failure; the cardiomyocytes contained RAB7- and lysosomal-associated membrane protein 2 (LAMP2)-positive multivesicular vacuoles, especially in the perinuclear regions. The myofibrils and mitochondria remained at the cell periphery. Cardiomyocyte death was accompanied by numerous autophagic vacuoles that contained undigested cellular constituents, as a result of impaired autophagic degradation. Notably, ablation of Atp6ap2 selectively suppressed expression of the VO subunits of V-ATPase, resulting in deacidification of the intracellular vesicles. Furthermore, the inhibition of intracellular acidification by treatment with bafilomycin A1 or chloroquine reproduced the phenotype observed for the (P)RR/ATP6AP2-deficient cardiomyocytes.

Conclusions: Genetic ablation of Atp6ap2 created a loss-of-function model for V-ATPase. The gene product of ATP6AP2 is considered to act as in 2 ways: (1) as (P)RR, exerting a RAS-related function; and (2) as the V-ATPase-associated protein, exerting a non–RAS-related function that is essential for cell survival.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility