Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T Matsui
Total Records ( 2 ) for T Matsui
  D. E Sosnovik , M Nahrendorf , P Panizzi , T Matsui , E Aikawa , G Dai , L Li , F Reynolds , G. W Dorn , R Weissleder , L Josephson and A. Rosenzweig
 

Background— The ability to image cardiomyocyte (CM) apoptosis in heart failure could facilitate more accurate diagnostics and optimize targeted therapeutics. We thus aimed to develop a platform to image CM apoptosis quantitatively and specifically in heart failure in vivo. The myocardium in heart failure, however, is characterized by very low levels of CM apoptosis and normal vascular permeability, factors thought to preclude the use of molecular MRI.

Methods and Results— Female mice with overexpression of Gaq were studied. Two weeks postpartum, these mice develop a cardiomyopathy characterized by low levels of CM apoptosis and minimal myocardial necrosis or inflammation. The mice were injected with the annexin-labeled nanoparticle (AnxCLIO-Cy5.5) or a control probe (CLIO-Cy5.5) and imaged in vivo at 9.4 T. Uptake of AnxCLIO-Cy5.5 occurred in isolated clusters, frequently in the subendocardium. Myocardial T2* was significantly lower (7.6±1.5 versus 16.8±2.7 ms, P<0.05) in the mice injected with AnxCLIO-Cy5.5 versus CLIO-Cy5.5, consistent with the uptake of AnxCLIO-Cy5.5 by apoptotic CMs. A strong correlation (r2=0.86, P<0.05) was seen between in vivo T2* (AnxCLIO-Cy5.5 uptake) and myocardial caspase-3 activity.

Conclusions— The ability of molecular MRI to image sparsely expressed targets in the myocardium is demonstrated in this study. Moreover, a novel platform for high-resolution and specific imaging of CM apoptosis in heart failure is established. In addition to providing novel insights into the pathogenesis of CM apoptosis, the developed platform could facilitate the development of novel antiapoptotic therapies in heart failure.

  H Hiura , T Matsui , M Matsumoto , Y Hori , A Isonishi , S Kato , T Iwamoto , T Mori and Y. Fujimura
 

ADAMTS13 is a metalloproteinase that specifically cleaves unusually large von Willbrand factor multimers under high-shear stress. Deficiency of ADAMTS13 activity induces a life-threatening generalized disease, thrombotic thrombocytopenic purpura. We established a simple and efficient method to purify plasma ADAMTS13 (pADAMTS13) from cryosupernatant using an anti-ADAMTS13 monoclonal antibody (A10) that recognizes a conformational epitope within the disintegrin-like domain. Using the purified pADAMTS13, the amino acid residues involved in cleavage by thrombin, plasmin and leucocyte elastase were determined, and the carbohydrate moieties of this enzyme was analysed by lectin blots. Purified pADAMTS13 had a specific activity of 300 U/mg (25,057-fold purification) and the pI was 5.1–5.5. Cleavage sites of the purified pADAMTS13 by three proteases were identified; thrombin cleaved the four peptidyl bonds between Arg257–Ala258, Arg459–Ser460, Arg888–Thr889 and Arg1176–Arg1177, plasmin cleaved the three peptidyl bonds between Arg257–Ala258, Arg888–Thr889 and Arg1176–Arg1177, and elastase cleaved the two peptidyl bonds between Ile380–Ala381 and Thr874–Ser875. Lectin blot analysis indicated the presence of non-reducing terminal 2–6 and 2–3-linked sialic acid residues with penultimate β-galactose residues on the N- and O-linked sugar chains of pADAMTS13, suggesting that pADAMTS13 is cleared from the circulation via the hepatic asialoglycoprotein receptor like other plasma glycoproteins.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility