Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T Kusakabe
Total Records ( 2 ) for T Kusakabe
  S Hoshi , N Hoshi , M Okamoto , J Paiz , T Kusakabe , J. M Ward and S. Kimura
 

NKX2-1 is a homeodomain transcription factor that is critical for genesis of the thyroid and transcription of the thyroid-specific genes. Nkx2-1-thyroid-conditional hypomorphic mice were previously developed in which Nkx2-1 gene expression is lost in 50% of the thyroid cells. Using this mouse line as compared with wild-type and Nkx2-1 heterozygous mice, a thyroid carcinogenesis study was carried out using the genotoxic carcinogen N-bis(2-hydroxypropyl)-nitrosamine (DHPN), followed by sulfadimethoxine (SDM) or the non-genotoxic carcinogen amitrole (3-amino-1,2,4-triazole). A significantly higher incidence of adenomas was obtained in Nkx2-1-thyroid-conditional hypomorphic mice as compared with the other two groups of mice only when they were treated with DHPN + SDM, but not amitrole. A bromodeoxyuridine incorporation study revealed that thyroids of the Nkx2-1-thyroid-conditional hypomorphic mice had >2-fold higher constitutive cell proliferation rate than the other two groups of mice, suggesting that this may be at least partially responsible for the increased incidence of adenoma in this mouse line after genotoxic carcinogen exposure. Thus, NKX2-1 may function to control the proliferation of thyroid follicular cells following damage by a genotoxic carcinogen.

  O Tassy , D Dauga , F Daian , D Sobral , F Robin , P Khoueiry , D Salgado , V Fox , D Caillol , R Schiappa , B Laporte , A Rios , G Luxardi , T Kusakabe , J. S Joly , S Darras , L Christiaen , M Contensin , H Auger , C Lamy , C Hudson , U Rothbacher , M. J Gilchrist , K. W Makabe , K Hotta , S Fujiwara , N Satoh , Y Satou and P. Lemaire
 

Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility