Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T Kuroda
Total Records ( 2 ) for T Kuroda
  K Tsunekawa , T Shijuku , M Hayashimoto , Y Kojima , K Onai , M Morishita , M Ishiura , T Kuroda , T Nakamura , H Kobayashi , M Sato , K Toyooka , K Matsuoka , T Omata and N. Uozumi
 

Na+/H+ antiporters influence proton or sodium motive force across the membrane. Synechocystis sp. PCC 6803 has six genes encoding Na+/H+ antiporters, nhaS1–5 and sll0556. In this study, the function of NhaS3 was examined. NhaS3 was essential for growth of Synechocystis, and loss of nhaS3 was not complemented by expression of the Escherichia coli Na+/H+ antiporter NhaA. Membrane fractionation followed by immunoblotting as well as immunogold labeling revealed that NhaS3 was localized in the thylakoid membrane of Synechocystis. NhaS3 was shown to be functional over a pH range from pH 6.5 to 9.0 when expressed in E. coli. A reduction in the copy number of nhaS3 in the Synechocystis genome rendered the cells more sensitive to high Na+ concentrations. NhaS3 had no K+/H+ exchange activity itself but enhanced K+ uptake from the medium when expressed in an E. coli potassium uptake mutant. Expression of nhaS3 increased after shifting from low CO2 to high CO2 conditions. Expression of nhaS3 was also found to be controlled by the circadian rhythm. Gene expression peaked at the beginning of subjective night. This coincided with the time of the lowest rate of CO2 consumption caused by the ceasing of O2-evolving photosynthesis. This is the first report of a Na+/H+ antiporter localized in thylakoid membrane. Our results suggested a role of NhaS3 in the maintenance of ion homeostasis of H+, Na+, and K+ in supporting the conversion of photosynthetic products and in the supply of energy in the dark.

  T Matsumoto , M Ii , H Nishimura , T Shoji , Y Mifune , A Kawamoto , R Kuroda , T Fukui , Y Kawakami , T Kuroda , S. M Kwon , H Iwasaki , M Horii , A Yokoyama , A Oyamada , S. Y Lee , S Hayashi , M Kurosaka , S Takaki and T. Asahara
 

The therapeutic potential of hematopoietic stem cells/endothelial progenitor cells (HSCs/EPCs) for fracture healing has been demonstrated with evidence for enhanced vasculogenesis/angiogenesis and osteogenesis at the site of fracture. The adaptor protein Lnk has recently been identified as an essential inhibitor of stem cell factor (SCF)–cKit signaling during stem cell self-renewal, and Lnk-deficient mice demonstrate enhanced hematopoietic reconstitution. In this study, we investigated whether the loss of Lnk signaling enhances the regenerative response during fracture healing. Radiological and histological examination showed accelerated fracture healing and remodeling in Lnk-deficient mice compared with wild-type mice. Molecular, physiological, and morphological approaches showed that vasculogenesis/angiogenesis and osteogenesis were promoted in Lnk-deficient mice by the mobilization and recruitment of HSCs/EPCs via activation of the SCF–cKit signaling pathway in the perifracture zone, which established a favorable environment for bone healing and remodeling. In addition, osteoblasts (OBs) from Lnk-deficient mice had a greater potential for terminal differentiation in response to SCF–cKit signaling in vitro. These findings suggest that inhibition of Lnk may have therapeutic potential by promoting an environment conducive to vasculogenesis/angiogenesis and osteogenesis and by facilitating OB terminal differentiation, leading to enhanced fracture healing.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility